人工智能

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33785671/article/details/52420305
人工智能基础:知识表示,推理方法,机器学习 计算机科学,控制论,信息论,神经生理学,心理学,语言学
专家系统
人工智能是模拟人的智能计算机应用:认识和理解世界环境的能力,提出概念建立方法进行演绎和归纳推理做出决策的能力,学习能力,自我适应能
人工智能的目标是搞清楚实现人工置鞥的有关原理,是计算机更智慧聪明有用

人工智能的研究核心为搜索策略:
求任一解路:回溯法,爬山法,宽搜,深搜,限定范围搜索,好的优先法
求最佳解路:大英博物馆法,分支界限法,动态规划法,最佳图索搜法
求与或关系解图:一般与或图搜索法,极小极大法,a-b剪枝法,启发式剪枝法

谓词逻辑是人工只能的知识表示
谓词逻辑推理的证明系统(归结反演系统)
基于归结法的问答系统
基于归结系统的自动程序结合
基于归结的问题求解 猴子摘香蕉问题
基于归结的逆向系统
归结法-逆向证明逆反式
人工智能求解的基本方法:图搜索法,分解法(规约法),归结证明法   基本的求解系统:产生式系统
规划(模拟人的行为思想):用目标堆栈制定规划,用目标集的非线性规划方法,分层规划
GPS系统,STRIPS系统,ABSTRIPS系统,NOAH系统,MOLGEN系统

人工智能语言LISP(函数形语言)PLANNER(问题求解和定理证明 实现正向和逆向推理)PEOLOG (基于以结尾词的逻辑性程序设计语言 自动推理能力和表现能力)

专家系统工具 开发专家系统的计算机语言 骨架型工具(EMYCIN  ART系统)和语言型工具 推理机和规则集 专家系统功能的完善和改变只依赖于规则集的完善和改变 推理机独立系统之外


人工智能的知识表示:
有表示专门领域知识的能力并保证知识库的知识相容;有从已知知识导出新知识的能力和建立表达新知识所需要的新的结构;便于知识获取和输入到知识库;便于将启发式知识附加到知识结构中以便把推理集合在最有希望的方向上;

结构化表示方法:单元,语义网络,概念从属,框架和脚本

自然语言理解:关键字分析(正则表达式),句法分析,词性结构分析  机器翻译

人工智能感知:离散化,平滑,分割,标记,分析(语音识别,图像识别)

机器学习研究学习过程和建造计算机学习模型,以便实现机器智能

机器学习(机器训练的过程)是构建学习系统-学习策略认知新知识进行模式识别并改变自身认知结构的系统:
机器学习分类:对提供的信息推理数量多少(输入法机器训练学习),获取知识类型(行为规则,物理对象的描述,求解问题的经验知识等)



//////人工智能的核心是搜索策略算法的研究-人工智能程序设计语言、人工智能知识表示方法,其他有自然语言的识别,感知系统的建立,机器学习的策略;//////////

人工智能通过自然语言和自然信息的感知学习提取模式进行机器学习(算法设计 搜索策略),解决证明系统,问答系统,专家系统问题
展开阅读全文

没有更多推荐了,返回首页