矩阵的逆,敏感性和病态系统

矩阵的逆是矩阵理论的基础

逆的存在性

对于一个n×n的矩阵,下列叙述等价:

rank(A) =  n;

A^{-1}存在(A是非奇异的);

Ax=0只有零解;

A \xrightarrow{\text{gauss-jordan}}I(高斯约旦消去法是高斯消元法的扩展,即先增广矩阵,通过行变换,将矩阵化成行阶梯形)

非奇异矩阵的积是非奇异的

(A_{1}A_{2}...A_{n})^{-1}=(A_{n}^{-1}...A_{2}^{-1}A_{1}^{-1})

敏感性

当c和d都是n×1非零列向量,且1+d^{T}c\neq 0,

(1+c^{T}d)=I-\frac{cd^{T}}{1+d^{T}c}

(为什么是这样之后再说明,目前需要注意的是{d^{T}c}是一个标量而cd^{T}是一个n×n的矩阵)

Sherman-Morrison公式

如果I用一个非奇异矩阵A来代替且满足I+d^{T}A^{-1}c\neq 0,则

                                                (A+c^{T}d)^{-1}=(A(I+A^{-1}c^{T}d))^{-1}

进一步化简得

                                                (A+c^{T}d)^{-1}=A^{-1}-\frac {A^{-1} c d^{T} A^{-1}} {1+d^{T}A^{-1}c}

Sherman-Morrison公式的应用

假定通过前面的计算已经A^{-1},现在A中有某个元素发生了改变,比如a_{ij}+\alpha,Sherman-Morrison公式可以计算该式子的逆。令c=e_{i} ,d=\alpha e_{j},e_{i}e_{j}是矩阵A第i和第j列的单位列向量,矩阵cd^{T}是除了(i,j)处元素为α,其余元素都为零的矩阵。因此

                               B=A+cd^{T}=A+\alpha e_{i}e_{j}^{T}=A^{-1}-\alpha\frac {A^{-1} e_{i} e_{j}^{T} A^{-1}} {1+\alpha e_{j}^{T}A^{-1}e_{i}}

进一步化简

                                                    B=A^{-1}-\alpha\frac {[A^{-1}] _{* i} [A^{-1}]_{j*}} {1+\alpha [A^{-1}]_{ji}}

这个式子表示了当矩阵元素a_{ij}变化时A^{-1}如何变化

另外一个经常求的逆是(I-A),当A具有足够小的幅度时,满足

                                                          \lim_{n \to \propto }A^{n}\rightarrow 0

那么类比于标量代数

                              (I-A)(A+A^{2}+...+A^{n})=I-A^{n}=I

诺埃曼级数

范数定义  

                                                      ||A||=max_{i}\sum_{j}|a_{ij}|

为最大绝对行和

 

实际例子 

 关于公式 (1+c^{T}d)=I-\frac{cd^{T}}{1+d^{T}c} 的说明

1+d^{T}c是如何出现的?

首先我们要注意到,A=(I+c^{T}d)是一个矩阵,但其逆矩阵A^{-1}出现了标量1+d^{T}c,这里的关键点在于,向量的外积是一个秩为1的矩阵。

Sherman-Morrison公式推导

我们从假设A^{-1}=I-\alpha cd^{T}出发,看看α如何决定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白光白光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值