矩阵的逆是矩阵理论的基础
逆的存在性
对于一个n×n的矩阵,下列叙述等价:
rank(A) = n;
存在(A是非奇异的);
Ax=0只有零解;
(高斯约旦消去法是高斯消元法的扩展,即先增广矩阵,通过行变换,将矩阵化成行阶梯形)
非奇异矩阵的积是非奇异的
敏感性
当c和d都是n×1非零列向量,且,
(为什么是这样之后再说明,目前需要注意的是是一个标量而
是一个n×n的矩阵)
Sherman-Morrison公式
如果I用一个非奇异矩阵A来代替且满足,则
进一步化简得
Sherman-Morrison公式的应用
假定通过前面的计算已经,现在A中有某个元素发生了改变,比如
,Sherman-Morrison公式可以计算该式子的逆。令
,
,
和
是矩阵A第i和第j列的单位列向量,矩阵
是除了(i,j)处元素为α,其余元素都为零的矩阵。因此
进一步化简
这个式子表示了当矩阵元素变化时
如何变化
另外一个经常求的逆是(I-A),当A具有足够小的幅度时,满足
那么类比于标量代数
诺埃曼级数
范数定义
为最大绝对行和
实际例子
关于公式 的说明
是如何出现的?
首先我们要注意到,是一个矩阵,但其逆矩阵
出现了标量
,这里的关键点在于,向量的外积是一个秩为1的矩阵。
Sherman-Morrison公式推导
我们从假设出发,看看α如何决定