class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue
self.count = numOccur
self.nodeLink = None
self.parent = parentNode #needs to be updated
self.children = {}
def inc(self, numOccur):
self.count += numOccur
def disp(self, ind=1):
print ' '*ind, self.name, ' ', self.count
for child in self.children.values():
child.disp(ind+1)
def createTree(dataSet, minSup=1): #create FP-tree from dataset but don't mine
headerTable = {}
#go over dataSet twice
for trans in dataSet:#first pass counts frequency of occurance
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
for k in headerTable.keys(): #remove items not meeting minSup
if headerTable[k] < minSup:
del(headerTable[k])
freqItemSet = set(headerTable.keys())
#print 'freqItemSet: ',freqItemSet
if len(freqItemSet) == 0: return None, None #if no items meet min support -->get out
for k in headerTable:
headerTable[k] = [headerTable[k], None] #reformat headerTable to use Node link
#print 'headerTable: ',headerTable
retTree = treeNode('Null Set', 1, None) #create tree
for tranSet, count in dataSet.items(): #go through dataset 2nd time
localD = {}
for item in tranSet: #put transaction items in order
if item in freqItemSet:
localD[item] = headerTable[item][0]
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)]
updateTree(orderedItems, retTree, headerTable, count)#populate tree with ordered freq itemset
return retTree, headerTable #return tree and header table
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children:#check if orderedItems[0] in retTree.children
inTree.children[items[0]].inc(count) #incrament count
else: #add items[0] to inTree.children
inTree.children[items[0]] = treeNode(items[0], count, inTree)
if headerTable[items[0]][1] == None: #update header table
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1:#call updateTree() with remaining ordered items
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
def updateHeader(nodeToTest, targetNode): #this version does not use recursion
while (nodeToTest.nodeLink != None): #Do not use recursion to traverse a linked list!
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
def ascendTree(leafNode, prefixPath): #ascends from leaf node to root
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
def findPrefixPath(basePat, treeNode): #treeNode comes from header table
condPats = {}
while treeNode != None:
prefixPath = []
ascendTree(treeNode, prefixPath)
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count
treeNode = treeNode.nodeLink
return condPats
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: p[1])]#(sort header table)
for basePat in bigL: #start from bottom of header table
newFreqSet = preFix.copy()
newFreqSet.add(basePat)
#print 'finalFrequent Item: ',newFreqSet #append to set
freqItemList.append(newFreqSet)
condPattBases = findPrefixPath(basePat, headerTable[basePat][1])
#print 'condPattBases :',basePat, condPattBases
#2. construct cond FP-tree from cond. pattern base
myCondTree, myHead = createTree(condPattBases, minSup)
#print 'head from conditional tree: ', myHead
if myHead != None: #3. mine cond. FP-tree
#print 'conditional tree for: ',newFreqSet
#myCondTree.disp(1)
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
import twitter
from time import sleep
import re
def textParse(bigString):
urlsRemoved = re.sub('(http:[/][/]|www.)([a-z]|[A-Z]|[0-9]|[/.]|[~])*', '', bigString)
listOfTokens = re.split(r'\W*', urlsRemoved)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
def getLotsOfTweets(searchStr):
CONSUMER_KEY = ''
CONSUMER_SECRET = ''
ACCESS_TOKEN_KEY = ''
ACCESS_TOKEN_SECRET = ''
api = twitter.Api(consumer_key=CONSUMER_KEY, consumer_secret=CONSUMER_SECRET,
access_token_key=ACCESS_TOKEN_KEY,
access_token_secret=ACCESS_TOKEN_SECRET)
#you can get 1500 results 15 pages * 100 per page
resultsPages = []
for i in range(1,15):
print "fetching page %d" % i
searchResults = api.GetSearch(searchStr, per_page=100, page=i)
resultsPages.append(searchResults)
sleep(6)
return resultsPages
def mineTweets(tweetArr, minSup=5):
parsedList = []
for i in range(14):
for j in range(100):
parsedList.append(textParse(tweetArr[i][j].text))
initSet = createInitSet(parsedList)
myFPtree, myHeaderTab = createTree(initSet, minSup)
myFreqList = []
mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
return myFreqList
#minSup = 3
#simpDat = loadSimpDat()
#initSet = createInitSet(simpDat)
#myFPtree, myHeaderTab = createTree(initSet, minSup)
#myFPtree.disp()
#myFreqList = []
#mineTree(myFPtree, myHeaderTab, minSup, set([]), myFreqList)
无监督学习-FPgrowth算法
最新推荐文章于 2024-08-16 19:02:32 发布