leetcode056_merge_intervals

Given a collection of intervals, merge all overlapping intervals.

For example,
Given [1,3],[2,6],[8,10],[15,18],
return [1,6],[8,10],[15,18].

先把给的list按照 start排序,之后遍历选择就行了。

/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/

class Solution {
    public List<Interval> merge(List<Interval> intervals) {
         if (intervals.size() <= 1) {
            return intervals;
        }
//        for (Interval interval : intervals) {
//          System.out.println(interval.start);
//        }
        // 第一部的排序 是非常重要的

        // 第一种 lamda表达式 排序,学习了
        // sort by ascending starting point using anonymous comparator
//        intervals.sort((i1, i2) -> Integer.compare(i1.start, i2.start));

        // 一般的思维就是 传入compator比较器啦
        Collections.sort(intervals, new Comparator<Interval>() {

            @Override
            public int compare(Interval i1, Interval i2) {
                // TODO Auto-generated method stub
                if (i1.start > i2.start) {
                    return 1;
                }
                else if (i1.start < i2.start) {
                    return -1;
                }
                else {
                    return 0;
                }
            }

        });
//        for (Interval interval : intervals) {
//          System.out.println(interval.start);
//        }

        List<Interval> res = new ArrayList<>();
        int start = intervals.get(0).start;
        int end = intervals.get(0).end;

        Iterator iterator = intervals.iterator();

        while (iterator.hasNext()) {
            Interval temp = (Interval) iterator.next();
            // 有重合了
//          System.out.println(temp.start);
            if (temp.start <= end) {
                end = Math.max(end, temp.end);
            }
            else {
                res.add(new Interval(start,end));
                start = temp.start;
                end = temp.end;
            }
        }
        res.add(new Interval(start, end));
        return new ArrayList<>(res);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值