# leetcode801_Mininum_SwapMakesSequencesIncreasing

title: leetcode801_Mininum_SwapMakesSequencesIncreasing
date: 2018-3-20 14:18:40
categories:
- leetcode
tags:

## - leetcode

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i]. Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing. (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < … < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing. It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.


1. 我们假定n1n-1处，没有交换就有序的花费,s1n-1处交换之后的花费，我们现在要依靠 n1,s1来推测 n2, s2的花费。
我们可以假设，a1 = A[i-1], b1 = B[i-1] ||a2 = A[i], b2 = B[i].
如果 a1 < a2 && b1 < b2 很显然，n2 = min(n1,n2),s2 = min(s2, s1 + 1), 因为 s2 总是代表交换之后的花费。
2. a1 < b2 && b1 < a2 n2 = min(n2,s1),s2 = min(s2, n1 + 1), 写出算法如下：

public static int minSwap(int[] A, int[] B) {
int n1 = 0; //  ni表示  n(i-1)不需要交换就已经是有序的了
int s1 = 1; // si 代表s(i-1) 在i - 1处交换一次就有序了
// 那么 以上推测， n1 = 0 s1 = 1 很明显，index 0处肯定是有序的
// index o 处 交换一次肯定也是有序的， 因为他们是第一个元素嘛

for (int i = 1; i < A.length; i++) {
// 以下是推测 n2 s2的过程
int n2 = Integer.MAX_VALUE;
int s2 = Integer.MAX_VALUE;
//
if (A[i - 1] < A[i] && B[i - 1] < B[i]) {
n2 = Math.min(n2, n1);
s2 = Math.min(s2, s1 + 1);
}
if (A[i - 1] < B[i] && B[i - 1] < A[i]) {
n2 = Math.min(n2, s1);
s2 = Math.min(s2, n1 + 1);
}

n1 = n2;
s1 = s2;
}
return Math.min(n1, s1);
}

python

def minSwap(self, A, B):
"""
:type A: List[int]
:type B: List[int]
:rtype: int
"""
n = len(A)
pre = [0, 1]
for i in range(1, n):
cur = [sys.maxsize, sys.maxsize]
if A[i]>A[i-1] and B[i]>B[i-1]:
cur[0] = min(cur[0], pre[0])
cur[1] = min(cur[1], pre[1]+1)
if A[i]>B[i-1] and B[i]>A[i-1]:
cur[0] = min(cur[0], pre[1])
cur[1] = min(cur[1], pre[0]+1)
pre = cur
return min(pre)