import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.sql.{DataFrame, SQLContext, SparkSession}
import org.apache.spark.rdd.RDD
import util.control.Breaks._
object customer_extract {
def main(args: Array[String]) {
val spark = SparkSession
.builder()
.appName("Spark SQL ")
.config("spark.some.config.option", "some-value")
.getOrCreate()
import spark.implicits._
val df = spark.read.json("/spark_data/spark_sql_data.json")
df.createOrReplaceTempView("data")
// Global temporary view is tied to a system preserved database `global_temp`
//获取所有用户Mac地址
val distinct_mac_DF = spark.sql("SELECT DISTINCT mac FROM data")
val mac_array = distinct_mac_DF.collect()
var i = 0
var result_string = ""
//对每一个用户(Mac)进行循环
while(i < mac_array.length){
var mac = mac_array(i)
var sql = "SELECT `time` from data where mac = '"+mac+"' order by `time` limit 1"
var min_time = (spark.sql(sql).collect())(0).toString.toInt
sql = "SELECT `time` from data where mac = '"+mac+"' order by `time` desc limit 1"
var max_time = (spark.sql(sql).collect())(0).toString.toInt
//第一层过滤,过滤掉 只检测到一次的用户
if(min_time == max_time)
{
break()
}
var now_time = min_time
var j = 0
var old_num = 0
var num = 0
var flag = 0 // 0 为 正常降序,1 为 另一个 start_time
var start_time = 0
var leave_time = 0
/* 在最小时间和最大时间按照时间间隔从小到大循环*/
while(now_time <( max_time+ 300)){
now_time = min_time +(j * 120)
j = j + 1
sql = "SELECT count(*) num from data where mac ='"+mac+"' and `time`>"+ now_time+""
num = (spark.sql(sql).collect())(0).toString.toInt
if (j == 1) {
old_num = num;
start_time = min_time;
} else {
if ((old_num > num) && (flag == 0)) {
old_num = num;
} else if ((num == old_num) && (flag == 0)) {
leave_time = now_time - 180;
//添加到结果集
result_string = result_string + """{ "mac":"""+mac + ","+ """ "start_time": """+start_time +","+ """ "leave_time": """+leave_time+"}\n"
//重置参数,准备记录下一次访问参数
start_time = 0;
leave_time = 0;
flag = 1;
} else if ((old_num > num) && (flag == 1)) {
start_time = now_time;
flag = 0;
}
}
}
i=i+1
}
//将结果集 存入 文件
import java.io._
val writer = new PrintWriter(new File("visit_records.txt" ))
writer.write(result_string)
writer.close()
}
}
scala 代码实例——customer_extract
最新推荐文章于 2024-03-30 09:58:24 发布