Bron–Kerbosch算法求一般图最大团/最大独立集

最大团: V中取K个顶点,两点间相互连接  
最大独立集: V中取K个顶点,两点间不连接   
最大团数量 = 补图中最大独立集数  

关于 Bron-Kerbosch算法(原文)

  基础形式是一个递归回溯的搜索算法.通过给定三个集合 (R,P,X). 
  初始化集合R,X分别为空,而集合P为所有顶点的集合. 
  而每次从集合P中取顶点{v}, 当集合中没有顶点时,两种情况. 
    1. 集合 R 是最大团, 此时集合X为空. 
    2. 无最大团,此时回溯. 
  对于每一个从集合P中取得得顶点{v},有如下处理: 
    1. 将顶点{v}加到集合R中, 集合P,X 与 顶点{v}得邻接顶点集合 N{v}相交, 之后递归集合 R,P,X 
    2. 从集合P中删除顶点{v},并将顶点{v}添加到集合X中. 
    若 集合 P,X都为空, 则集合R即为最大团. 
    总的来看就是每次从 集合P中取v后,再在 P∩N{v} 集合中取,一直取相邻,保证集合R中任意顶点间都两两相邻…

#include<cstdio>  
#include<cstring>  
#define N 1010  
bool flag[N], a[N][N];  
int ans, cnt[N], group[N], n, vis[N];  

bool dfs( int u, int pos ){  
    int i, j;  
    for( i = u+1; i <= n; i++){  
        if( cnt[i]+pos <= ans ) return 0;  
        if( a[u][i] ){  
             // 与目前团中元素比较,取 Non-N(i)   
            for( j = 0; j < pos; j++ ) if( !a[i][ vis[j] ] ) break;   
            if( j == pos ){     // 若为空,则皆与 i 相邻,则此时将i加入到 最大团中   
                vis[pos] = i;  
                if( dfs( i, pos+1 ) ) return 1;      
            }      
        }  
    }      
    if( pos > ans ){  
            for( i = 0; i < pos; i++ )  
                group[i] = vis[i]; // 最大团 元素   
            ans = pos;  
            return 1;      
    }      
    return 0;  
}   
void maxclique()  
{  
    ans=-1;  
    for(int i=n;i>0;i--)  
    {  
        vis[0]=i;  
        dfs(i,1);  
        cnt[i]=ans;  
    }  
}  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值