2017广西邀请赛 D题Covering (递推+矩阵快速幂)

题目链接:Covering
解题思路:递推+快速幂。
递推思路请看:HDU 6185 && 2017广西邀请赛:Covering(矩阵快速幂)
下面是我自己本题的快速幂代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<iostream>

using namespace std;

typedef __int64 ll;
const int dim =  4;
const ll MOD = 1000000007;
#define mod(x) ((x)%MOD)


struct mat{
    ll m[dim][dim];
}unit;

mat operator * (mat a,mat b){
    mat ret;
    ll x;
    for(ll i = 0;i < dim;i++){
        for(ll j = 0;j < dim;j++){
            x = 0;
            for(ll k = 0;k < dim;k++)
                x += mod((ll)a.m[i][k]*b.m[k][j]);
            ret.m[i][j] = mod(x);
        }
    }
    return ret;
}

void init_unit(){
    for(ll i = 0;i < dim;i++)
        unit.m[i][i] = 1;
    return ;
}

mat pow_mat(mat a,ll n){
    mat ret = unit;
    while(n){
        if(n&1) ret = ret*a;
        a = a*a;
        n >>= 1;
    }
    return ret;
}

int main(){
    ll n;
    init_unit();
    while(~scanf("%lld",&n)){
        if(n == 1) printf("1\n");
        else if(n == 2) printf("5\n");
        else if(n == 3) printf("11\n");

        else{
            mat a,b;
            b.m[0][0]=0,b.m[0][1]=1,b.m[0][2]=1,b.m[0][3]=0;
            b.m[1][0]=5,b.m[1][1]=1,b.m[1][2]=0,b.m[1][3]=0;
            b.m[2][0]=0,b.m[2][1]=0,b.m[2][2]=0,b.m[2][3]=1;
            b.m[3][0]=1,b.m[3][1]=0,b.m[3][2]=0,b.m[3][3]=0;

            a.m[0][0]=11,a.m[0][1]=7,a.m[0][2]=5,a.m[0][3]=1;

            b = pow_mat(b,n-3);
            a = a*b;
            printf("%I64d\n",a.m[0][0]%MOD);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值