2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F Trig Function(切比雪夫多项式)

题目链接:Trig Function
题意:求给定n后,问sin(nx)多项式中,x^m项的系数是多少。
思路:切比雪夫多项式,可以把cos(nx)展开为系数不为0的每一项的累加。如图:
这里写图片描述
注意”!!”不是阶乘的阶乘,而是不超过n且与n具有相同奇偶性的所有正整数连乘积。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#include<cstdlib>
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long ll;
using namespace std;
const int MOD = 998244353;
const int maxn = 1e4+10;
ll fact[maxn] = {1};//factorial阶乘
void init(){
    for(int i = 1; i < maxn; i++){
        fact[i] = i*fact[i-1]%MOD;
    }
}
ll inverse(ll x,int q){
    ll ret = 1;
    while(q){
        if(q%2 == 1){
            ret = ret*x%MOD;
        }
        x = x*x%MOD;
        q /= 2;
    }
    return ret;
}
int main(){
    init();
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        if(m > n) puts("0");
        else if(n%2 == 1 && m%2 == 0 || n%2 == 0 && m%2 == 1){
            puts("0");
        }else{
            //应该留意的是,当n是偶数,m对应切比雪夫多项式中的2k
            //当n是奇数,m对应切比雪夫多项式中的2k-1,公式里对应的换为m
            if(m >= 1){
                /*求n*(n+m-2)!!/(n-m)!! 由于(n+m-2) >= (n-m),所以从(n-m+1) 遍历的 (n+m-1)*/
                ll fz = n%MOD;
                for(int i = n-m+1; i <= n+m-1; i++){
                    if(i%2 == (n+m-2)%2){
                        fz = fz*i%MOD;
                    }
                }
                ll ans = fz*inverse(fact[m],MOD-2)%MOD;/*逆元:fz/fact[m]%MOD = fz*inverse(fact[m],mod-2);*/
                if((n-m)/2%2) ans = -ans;
                printf("%lld\n",(ans+MOD)%MOD);
            }else{
                /*求(n+m-2)!!/(n-m)!! 由于(n+m-2) < (n-m),所以从(n+m-1) 遍历的 (n-m)*/
                ll fm = 1;
                for(int i = n+m-1; i <= n-m; i++){
                    if(i%2 == (n+m-2)%2){
                        fm = fm*i%MOD;
                    }
                }
                ll ans = n%MOD*inverse(fact[m],MOD-2)%MOD*inverse(fm,MOD-2)%MOD;
                if((n-m)/2%2) ans = -ans;
                printf("%lld\n",(ans+MOD)%MOD);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值