题目链接:Trig Function
题意:求给定n后,问sin(nx)多项式中,x^m项的系数是多少。
思路:切比雪夫多项式,可以把cos(nx)展开为系数不为0的每一项的累加。如图:
注意”!!”不是阶乘的阶乘,而是不超过n且与n具有相同奇偶性的所有正整数连乘积。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#include<cmath>
#include<map>
#include<set>
#include<cstdlib>
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long ll;
using namespace std;
const int MOD = 998244353;
const int maxn = 1e4+10;
ll fact[maxn] = {1};//factorial阶乘
void init(){
for(int i = 1; i < maxn; i++){
fact[i] = i*fact[i-1]%MOD;
}
}
ll inverse(ll x,int q){
ll ret = 1;
while(q){
if(q%2 == 1){
ret = ret*x%MOD;
}
x = x*x%MOD;
q /= 2;
}
return ret;
}
int main(){
init();
int n,m;
while(~scanf("%d%d",&n,&m)){
if(m > n) puts("0");
else if(n%2 == 1 && m%2 == 0 || n%2 == 0 && m%2 == 1){
puts("0");
}else{
//应该留意的是,当n是偶数,m对应切比雪夫多项式中的2k
//当n是奇数,m对应切比雪夫多项式中的2k-1,公式里对应的换为m
if(m >= 1){
/*求n*(n+m-2)!!/(n-m)!! 由于(n+m-2) >= (n-m),所以从(n-m+1) 遍历的 (n+m-1)*/
ll fz = n%MOD;
for(int i = n-m+1; i <= n+m-1; i++){
if(i%2 == (n+m-2)%2){
fz = fz*i%MOD;
}
}
ll ans = fz*inverse(fact[m],MOD-2)%MOD;/*逆元:fz/fact[m]%MOD = fz*inverse(fact[m],mod-2);*/
if((n-m)/2%2) ans = -ans;
printf("%lld\n",(ans+MOD)%MOD);
}else{
/*求(n+m-2)!!/(n-m)!! 由于(n+m-2) < (n-m),所以从(n+m-1) 遍历的 (n-m)*/
ll fm = 1;
for(int i = n+m-1; i <= n-m; i++){
if(i%2 == (n+m-2)%2){
fm = fm*i%MOD;
}
}
ll ans = n%MOD*inverse(fact[m],MOD-2)%MOD*inverse(fm,MOD-2)%MOD;
if((n-m)/2%2) ans = -ans;
printf("%lld\n",(ans+MOD)%MOD);
}
}
}
return 0;
}