2017 ACM-ICPC 亚洲区(西安赛区)网络赛 F. Trig Function (切比雪夫多项式)

题意:




思路:手算了几项,然后把n为6的那一行输到OEIS,就搜到了切比雪夫多项式。

然后百度第一类切比雪夫多项式是这个公式:

注意"!!"不是阶乘的阶乘,而是不超过n且与n具有相同奇偶性的所有正整数连乘积。

n分类讨论下,当n为偶数时m=2*k, n为奇数时m=2*k-1

还有注意下"!!"的约分,可能下面的比上面的大


代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
const int mod = 998244353;
ll fac[maxn] = {1};
ll n, m;

void init()
{
    for(int i = 1; i < maxn; i++)
        fac[i] = fac[i-1]*i%mod;
}

ll qmod(ll x, int q)
{
    ll res = 1;
    while(q)
    {
        if(q%2) res = res*x%mod;
        x = x*x%mod;
        q /= 2;
    }
    return res;
}

int main(void)
{
    init();
    while(~scanf("%lld%lld", &n, &m))
    {
        if(m > n) puts("0");
        else if(n%2 && m%2 == 0) puts("0");
        else if(n%2 == 0 && m%2) puts("0");
        else
        {
            ll fz = n%mod;
            if(m >= 1)
            {
                for(int i = n-m+1; i <= n+m-1; i++)
                {
                    if(i%2 == (n+m-2)%2)
                    {
                        fz = fz*i%mod;
                    }
                }
                ll tmp = fz*qmod(fac[m], mod-2)%mod;
                if((n-m)/2%2) tmp = -tmp;
                printf("%lld\n", (tmp+mod)%mod);
            }
            else
            {
                ll t = 1;
                for(int i = n+m-1; i <= n-m; i++)
                {
                    if(i%2 == (n+m-2)%2)
                        t = t*i%mod;
                }
                ll tmp = fz*qmod(fac[m], mod-2)%mod*qmod(t, mod-2)%mod;
                if((n-m)/2%2) tmp = -tmp;
                printf("%lld\n", (tmp+mod)%mod);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值