数字三角形 动态规划

#include <iostream>
#include <stdlib.h>
using namespace std;
#define MAX 100
// 数字三角形问题 方法一:递归求解
// execution time 13.681s
/*
解题思路:
1. 用二维数组存放数字三角形
2. d[i][j]:第i行第j个数字
3. maxSum(i,j):从d[i][j]到底边的各条路径中,最佳路径的数字之和
4. 对d[i][j]来说有两条可走路径:
    (1)d[i+1][j]
    (2)d[i+1][j+1]
5. 递归条件
    (1)如果i==num,maxSum(i,j)=d[i][j]
    (2)否则,maxSum(i,j)=max{ maxSum(i+1,j),maxSum(i+1,j+1) } + d[i][j]
*/
int d[MAX][MAX];
int num;
int maxSum(int i, int j){
    if(i == num)
        return d[i][j];
    int x = maxSum(i+1, j);
    int y = maxSum(i+1, j+1);
    return max(x,y) + d[i][j];
}

int main()
{
    int i,j;
    cin >> num; //输入数字三角形的行数
    for(i = 1; i <= num; i ++)
        for(j = 1; j <= i; j ++)
            cin >> d[i][j];
    // 输入三角形矩阵,注意从(1,1)开始
    cout << maxSum(1,1) << endl;
    // maxSum(i,j)代表从d[i,j]向下的路径中最大的和
    return 0;
}

#include <iostream>
#include <stdlib.h>
#include <string.h>
#define MAX 100
using namespace std;
// 数字三角形问题 方法二:记忆递归动态规划求解
// execution time 15.280s
int d[MAX][MAX];
int D[MAX][MAX]; //记忆矩阵
int num;

int maxSum(int i, int j){
    if (D[i][j]!=-1)
    return D[i][j];
    if(i == num)
        D[i][j]=d[i][j];
    else
    {
    int x = maxSum(i+1, j);
    int y = maxSum(i+1, j+1);
    D[i][j]=max(x,y)+d[i][j];
    }

    return D[i][j];
}

int main()
{
    int i,j;
    cin >> num; //输入数字三角形的行数
    for(i = 1; i <= num; i ++)
        for(j = 1; j <= i; j ++)
            cin >> d[i][j];
    // 输入三角形矩阵,注意从(1,1)开始
    memset(D,-1,sizeof(D));
    /*
    功能:
    将s所指向的某一块内存中的每个字节的内容全部设置为ch指定的ASCII值,
    块的大小由第三个参数指定,
    这个函数通常为新申请的内存做初始化工作。
    用法:void *memset(void *s, char ch, unsigned n);
    */
    cout << maxSum(1,1) << endl;
    // maxSum(i,j)代表从d[i,j]向下的路径中最大的和
    return 0;
}


#include <iostream>
#include <stdlib.h>
#include <string.h>
#define MAX 100
using namespace std;
// 数字三角形问题 方法三:递推型动态规划求解
// execution time 18.216s
/*
解题思路:
从底向上递推,出最后一行外,每一行的每个点的最大值等于自身加上下面一行对应左右两个点的最大值。
从下往上递推,最顶部的即所求。
*/
int d[MAX][MAX];
int num;

int maxSum(int num){
    int i, j;
    for(i = num - 1; i >= 1; i --)
        for(j = 1; j <= i; j ++){
            d[i][j] = max(d[i+1][j],d[i+1][j+1]) + d[i][j];
        }
    return d[1][1];
}

int main()
{
    int i,j;
    cin >> num; //输入数字三角形的行数
    for(i = 1; i <= num; i ++)
        for(j = 1; j <= i; j ++)
            cin >> d[i][j];
    // 输入三角形矩阵,注意从(1,1)开始
    cout << maxSum(num) << endl;
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值