log双线性模型log-bilinear model简单概括

本文深入解析了自然语言处理中的一种简单模型——LBLM(对数双线性模型)。LBLM利用上下文词向量预测下一个词向量,通过线性组合上下文词向量实现。文中详细介绍了实数值词向量的运用及如何通过预测表示和所有词的相似度表示计算下一个词的分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • LBLM(log-bilinear model)是自然语言处理中的比较简单的模型。
  • LBLM根据上下文的词向量来预测下一个词向量 w n w_n wn,通过对上下文词向量的一个线性组合来表示:
    在这里插入图片描述
    r w r_w rw是一个实数值词向量对于词 w w w
  • 对于下一个词的分布计算根据 w n w_n wn预测表示和所有词的相似度表示计算出来
    在这里插入图片描述

翻译自https://www.cs.toronto.edu/~hinton/csc2535/notes/hlbl.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值