- 二维网格图中探测环
给你一个二维字符网格数组 grid ,大小为 m x n ,你需要检查 grid 中是否存在 相同值 形成的环。
一个环是一条开始和结束于同一个格子的长度 大于等于 4 的路径。对于一个给定的格子,你可以移动到它上、下、左、右四个方向相邻的格子之一,可以移动的前提是这两个格子有 相同的值 。
同时,你也不能回到上一次移动时所在的格子。比方说,环 (1, 1) -> (1, 2) -> (1, 1) 是不合法的,因为从 (1, 2) 移动到 (1, 1) 回到了上一次移动时的格子。
如果 grid 中有相同值形成的环,请你返回 true ,否则返回 false 。
示例 1:
输入:grid = [[“a”,“a”,“a”,“a”],[“a”,“b”,“b”,“a”],[“a”,“b”,“b”,“a”],[“a”,“a”,“a”,“a”]]
输出:true
解释:如下图所示,有 2 个用不同颜色标出来的环:
示例 2:
输入:grid = [[“c”,“c”,“c”,“a”],[“c”,“d”,“c”,“c”],[“c”,“c”,“e”,“c”],[“f”,“c”,“c”,“c”]]
输出:true
解释:如下图所示,只有高亮所示的一个合法环:
示例 3:
输入:grid = [[“a”,“b”,“b”],[“b”,“z”,“b”],[“b”,“b”,“a”]]
输出:false
提示:
m == grid.length
n == grid[i].length
1 <= m <= 500
1 <= n <= 500
grid 只包含小写英文字母。
分析:看到题意就知道是个搜索题,但如何判断环?这是解决本题的核心问题。
其实仔细想想,只要我下一个访问的节点并不是上一个节点,并且和当前节点的字符相同,不就符合环的定义吗?并不需要一定是一个完整的环,在搜索的半路找到了环就足以解题。 所以我们要记录下上一个节点,不必判断是否回到了起点。
保存上一个节点可以把行列下表都记录下来,还有一个方法,就是把二维网格标号,那么每个位置的标号不就唯一了,唯一就可以判断是否是上一个点,于是我们把x,y坐标转化成一个唯一标号就可以判断是否是上一个节点了。用唯一标识去判断上一个点的好处是,减小了空间并能防止两个点判断相等时的错误,比如我要判断这两个点是否相等:x!=x’&&y!=y’对吗?这里中间要用||才对,只要一个参数不同就是不同的点了,减小了犯逻辑错误的可能。这个题目还有一个陷阱,就是关于如何剪枝的问题,因为我们不可能对每一个节点都去搜索,这样的搜索空间过于庞大,而搜索过的字符一定dfs都已经搜索过,根据图论,如果一个图中存在环,无论无门从哪个位置走一定能找到一个环!所以这里我们尽可标记访问过的点就好,连续的字符搜索一遍就够了,不必恢复现场,因为要剪枝。搜索过程中我只要保证不继续搜索上一个节点就可以了,访问过的节点大可不必绕开走
本题刚开始想很好想,但容易落入深搜的陷阱,记录一下。
class Solution {
public:
int book[510][510];
int row,col,pre,dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
bool judge(int s,int e,int step,vector<vector<char>>& grid,int pre){
if(book[s][e]&&step>3)return 1;
book[s][e]=1;
for(int i=0;i<4;i++){
int ts = s+dir[i][0];
int te = e+dir[i][1];
if(te>=0&&ts>=0&&ts<row&&te<col&&grid[s][e]==grid[ts][te]&&pre!=ts*row+te){
if(judge(ts,te,step+1,grid,s*row+e))return 1;
}
}
return 0;
}
bool containsCycle(vector<vector<char>>& grid) {
col = grid[0].size();
row = grid.size();
res=0;
for(int i=0;i<row&&!res;i++){
for(int j=0;j<col&&!res;j++){
if(!book[i][j]&&judge(i,j,1,grid,-1))return 1;
}
}
return 0;
}
};```