【Hard to Park】Estimating Parking Difficulty at Scale

First Pass

Title

Hard to Park? Estimating Parking Difficulty at Scale

Author

Neha Arora James Cook Ravi Kumar Ivan Kuznetsov Yechen Li Huai-Jen Liang Andrew Miller Andrew Tomkins Iveel Tsogsuren Yi Wang

Source

KDD ’19, August 4–8, 2019, Anchorage, AK, USA

Abstract

  • 提取不同时间、不同地点停车难的特点,以及特点的影响程度。
  • 针对预测停车难问题评估各种模型
  • 解决该问题的挑战

Introduction

问题场景:

  1. 便宜的停车位有地方,结果导航到贵的地方
  2. 导航把用户只放到目的地,还需要耗时找停车位

系统问题:

  1. 停车位随着时间地点不同变化
  2. 停车位的精确数据很有限
  3. 为不同的城市设计的系统不同

解决:
使用众包数据(crowd-sourced data)(ground truth)搭建预测停车难的系统

提取特点:300多个特征,例如:

  • 从目的地开始到停车点的平均距离
  • 目的地附近的停车位分布
  • 找停车位的平均时间

location trajectory data提取的特征有噪音,但是其特征空间是可预测的

  • logistic regression
  • deep feed-forward networks
Contributions
  1. 设计并评估了从本地轨迹中提取出了一系列对停车难问题有效的特征
  2. 通过特征聚合,给予调研的地面事实进行设计、实施不同的模型方法
  3. 包括很多不同地方的大数量级的数据库归纳一个新城市,以及不同特征的重要程度

Sections

相关工作:停车传感器、停车位占用模型、路线规划
问题和方法:目标是训练出停车难的程度
数据:地图的轨迹数据、提取出来的时空桶、调研的真实数据
特征:基于轨迹的时间和距离特征、周转特征、环境特征
模型:奖励矩阵、惩罚函数、单层回归、前馈深度神经网络模型
评估:模型输出测试、平衡归一化奖励(BNR)、单个特征族的能力、特征族的消融分析、DNN性能和泛化能力、跨城市泛化与本地模型的比较
总结评论:通过探索给定区域反映停车难的特征类,产生一些主观的停车难的估计。实验发现,无论停车难预测的结果是什么,其他出行方式的查询都增加了4%。【那么该试验有何意义?大家都不自己开车了,都去找别的交通工具了。及时地图上预测的结果是容易停车,也有一些人选择其他方式出行。】【或许到达终点时,停车位的使用情况会改变。根据从出发地到达目的地的时间t以及目的地附近停车位的历史停车信息共同预测,在时间t时目的地附近停车位的情况】
future:停车状况会根据季节,停车位的结构和功能变化,事件等而变化。在汇总特征和地面实况并生成反映当前状况的实时估计时,必须考虑到这些。

地图应用给用户做路线导航时,停车难度的预测是很有参考价值的部分,那么该问题是通过什么模型来解决的呢?输入的数据是什么?输出的数据按照谷歌地图的需求是easy, medium, limited。


Second Pass:gist/take home message

2.1 Parking sensors

  • 要得到某一时间点某一个停车位的占用情况,可以通过给停车位位安装传感器,或者图象识别、GPS等方式来获取。
  • 本文采取的是历史地理位置数据和匿名用户调查

2.2 Parking occupancy modeling

  • 统计学ML方法:聚类、SVR、时间序分析、马尔科夫链、向量自回归模型、神经网络、表示学习…
  • 贝叶斯正则化神经网络(历史数据、交通流、天气状况)Alajali et al. propose a Bayesian regularized neural network that takes into account historical data, traffic flow, and weather conditions.
  • Du Parking:DNN+LSTM(实时停车可用性预测,基于百度地图地理数据和停车场传感器数据)
  • 基于来自多个数据源的实时和历史数据(包括占用率,交通状况,道路和天气以及网络拓扑),结合了CNN和RNN / LSTM来建模时空相关性。
    这些方法都用到了停车位传感器或停车收费表。

2.3 Route planning

很多停车位的预测是在路线规划算法的基础上研究的。
ParkAssistant目的是最小化停车成本(包括停车费、停车时间、交规、司机开车习惯等)
PSR在路网模拟环境中用A*算法
低成本数据源:所谓的基于移动设备浮动车辆数据

3 FORMULATION AND OVERVIEW

目标:给定目的地和当前时间,预测目的地附近的停车位是个什么情况。
such as: f ( l = 37 M a i n S t r e e t , t = 3 : 12 p m o n J a n u a r y 2 ) = l i m i t e d f(l=37MainStreet,t=3:12pm on January 2)=limited f(l=37MainStreet,t=3:12pmonJanuary2)=limited
处理:将目的地 l l l和时间 t t t装入到一个“SpatialTemporal buckets”B中,并且提取出一个特征向量 x x x,由模型M得出 f ( ℓ , t ) = M ( x B ) f (ℓ,t) = M(x_B) f(,t)=M(xB)

4 Data

4.3 ground truth 市民调查

在不同的时间、不同的地点调查“是否停车难”,存在很大的主观因素,因此得到的结果可能产生互斥的情况。为了避免这个问题的发生,把调查的问题改为“该地区在M分钟内能否找到停车位呢?”,M很难确定。经其研究所得,第二个问题可以采用,所以他们获取了10万条测试。

4.3.1 Inter-rater agreement

Inter-rater agreement 评价者一致性
按照时间空间将调查的回答分组(特征聚合方式使同一个时空桶中的模型是相同的);
在每一个时空桶中使用联合概率来计算评价者一致性;
计算两个评论落入同一个时空桶时一致的频率。
对于每一个桶都有一个answer的集合S,我们计算一致性和一个地理区域所有桶的平均一致性。

我们根据一组评估者报告的平均难度评估模型的准确性,并了解此平均难度代表具有非平凡差异的个人经历的分布。
评论越一致,停车越难
在这里插入图片描述

5 如何提取特征

从轨道数据中提取,按照空间和时间的分法将轨迹数据分成一个个时空桶,然后将每一个桶中的轨迹中提取出来的特征进行处理: count, 10th percentile, median, mean, and 90th percentile.

5.1 Trajectory-based time and distance features

选取了一个到达目的地D的邻近点r,从轨迹中分析出以下几个变量:
t i m e r time_r timer表示到达 r r r的时刻
p a r k T i m e parkTime parkTime表示到达停车位的时刻
a r r i v a l T i m e arrivalTime arrivalTime表示到达目的地的时刻
v i c i n i t y P a r k T i m e r = p a r k T i m e − t i m e r vicinityParkTime_r=parkTime-time_r vicinityParkTimer=parkTimetimer表示从邻近点 r r r到达停车位的实际时间
v

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值