深度学习中的温度参数(temperature parameter)--疑问待解决

本文探讨了深度学习中温度参数(temperature)的概念,它影响softmax函数的输出概率分布。较高的温度使分布更平滑,导致损失增大,梯度变大,有助于避免局部最优。在训练初期设置较大温度,随后逐渐降低(降温),有利于模型收敛。文章提出疑问:概率分布的平滑程度如何具体影响模型的收敛过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

读论文的过程中,看到这个概念:temperature parameter。
L n = − l o g e x p ( s i m ( Z n i , Z n j ) / τ ) ∑ n ′ = 1 , n ′ ≠ n M ( e x p ( s i m ( Z n i , Z n ′ j ) / τ ) ) τ 为 温 度 参 数 \mathcal{L}_n=-log\frac{exp(sim(Z_{ni},Z_{nj})/\tau)}{\sum^M_{n'=1,n'\ne{n}}(exp(sim(Z_{ni},Z_{n'j})/\tau))} \quad \tau为温度参数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值