2020年5月第一次presentation:讲的是人流量预测算法ST-ResNet

本文是作者研究生期间关于人流量预测的初次报告,介绍了选择该主题的原因及研究背景。通过ST-ResNet模型,阐述了如何利用深度学习处理时空大数据,特别是城市计算中的交通预测问题。内容涵盖数据特点、模型结构、残差网络的应用,以及对未来研究的思考,适合初学者入门。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

整理电脑文件时发现研究生第一次做报告的稿子,在此分享一下。对于初学者而言,特别是不善于阅读文献且阅读量寥寥无几的情况下,做一个非常棒深层次的报告是有难度的。是的,我就是这类学生。从师兄给六篇实验室相关的文献中选定方向,初次接触论文,无从下手,找不到重点。知道文章的脉络结构,也学习了如何阅读论文,然而从问题描述到机器学习相关方法都是陌生的,内心产生了抗拒。因此,选择了场景最好理解的人流量预测算法的研究。本篇博文就是在这个时期写出来的,讲解的非常浅显,但是脉络还算清晰。选择发布出来,希望刚入门的同学可以有个基础参考。ps:大佬们写的博文都非常好,他们都有自己的公众号,能得到最新的深度学习(特别是时空序列相关)的文献动态和讲解。需要更专业的参考大家右转:

最后,研究生一般的流程:需要确定科研方向,并且搜索大量文献,逐渐熟悉研究方向,并对相关文献分析总结,了解所选问题的挑战和现有方法,然后进一步复现优秀模型,如果幸运发现了改进的方法并且实验结果有效,那么小论文就有了。上课的时候有老师讲过,即使自己的方法效果不佳,只要有用也可以整理出来发表。这个方法需要思路缜密,前人没有在该问题上使用这种方法,在理论层面,该方法又是可行的,那么就可以说说为啥实际中不行,以供后人参考。

今天想给大家分享一下城市计算方面的内容。我最近在进行人流量预测方面的研究,所以就以这个问题为切入点带大家了解一下城市计算中的人流量预测。

  • 背景介绍(包括时空大数据)
  • 网格划分(vedio-like)
  • 数据流定义,时间维度特征对应的数据划分
  • Deepst框架,conv解决(时间三个属性;空间near、distant&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值