统计学条件概率、贝叶斯公式

分类加法,分步乘法

1. 分类加法计数原理场景:从甲地到乙地,可以乘火车、汽车、轮船。火车有 4 班、汽车 2 班、轮船 3 班,那么一天中乘坐这些交通工具从甲地到乙地有多少种不同的走法?
2. 分步乘法计数原理场景:从 A 到 B 的道路有 3 条,从 B 到 C 的道路有 2 条,那么从 A 到 B 到 C 总共有多少种不同的走法?

区别:分类计数原理是加法原理,不同的类加起来就是我要得到的总数;分步计数原理是乘法原理,是同一事件分成若干步骤,每个步骤的方法数相乘才是总数。

排列问题

从n个不同元素种取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素种取出m个元素的排列数,用符号A_n^m表示。

A_n^m=n(n-1)(n-2)\cdots(n-m+1)=\frac{n!}{(n-m)!}

推导:把n个不同的元素任选m个排序,按计数原理分步进行

取第一个:有n种取法;
取第二个:有(n−1)种取法;
取第三个:有(n−2)种取法;
……
取第m个:有(n−m+1)种取法;

根据分步乘法原理,得出上述公式。

组合问题

从n个不同元素种取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素种取出m个元素的组合数,用符号C_n^m表示。

C_n^m=\frac{A_n^m}{A_m^m}=\frac{n(n-1)(n-2)\cdots (n-m+1)}{m!}=\frac{n!}{m!(n-m)!}

为什么要除以A_m^m,因为要去除重复,A_m^m代表把这m个被抽出来的球进行全排序,除代表这么多种的排列组合都代表一个情况(因为组合C_n^m是没序的)

等可能概率(古典概型)

定义:若试验满足:
样本空间S中样本点有限(有限性)
出现每一个样本点的概率相等(等可能性)
称这种试验为等可能概型(或古典概型)。

条件概率

全概率公式

贝叶斯公式

先验后验

这是与贝叶斯概率更新有关的两个概念。假如某一不确定事件发生的主观概率 因为某个新情况的出现 而发生了改变,那么改变前的那个概率就被叫做先验概率(上面公式的Bi),改变后的概率就叫后验概率(上面公式的P(Bi|A) )。

举个简单的更新概率的例子。
想象有 A、B、C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋。此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3。
现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋。此时再问:鸡蛋在 A 碗下面的概率是多少?答曰 1/2。注意,由于有“揭开C碗发现鸡蛋不在C碗下面”这个新情况,对于“鸡蛋在 A 碗下面”这件事的主观概率由原来的 1/3 上升到了1/2。这里的先验概率就是 1/3,后验概率是 1/2。
也就是说“先”和“后”是相对于引起主观概率变化的那个新情况而言的。

事件独立

推导理解:

因为A1的发生对A2的发生概率不影响

  • 13
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 11
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lovelife110

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值