条件概率、全概率公式和贝叶斯公式

1. 条件概率

我么可以看到 P(B|A) ≠ P(B)

P(B|A) 叫做A发生的条件下B发生的概率,所以以这个就叫做条件概率

这里一定要把可列可加性看懂。。。

对上面这个推导做一下解释

对于上面的④来说进一步化简得

条件概率的定义已经给出了,现在把条件概率重新写一下,就可以得到乘法公式

上图很有用,一会说贝叶斯定理会用到。

2. 全概率公式

我们先来回顾一下,在上篇文章中讲的条件概率的公式:

现在手动推一下全概率公式:

全概率公式的意义:

 

 全概率公式的例题:加深理解

3. 贝叶斯公式

这就是贝叶斯公式的推到。由条件概率出发,分子通过一步条件概率变形,分母通过全概率公式变形。重点:不必分子分母同时变形,只变其中之一也行。所以就有了下面公式:

贝叶斯公式的意义:

例子:

接下来借这个例子说说先验概率和后验概率,概率模型的机器学习算法,包括深度学习中都是用的概率,所以这个一定要弄清楚

参考地址:

1.5 条件概率Conditional Probability - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/356465557 全概率公式、贝叶斯公式 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/78297343

### 类条件概率的概念及其计算方法 #### 什么是类条件概率? 类条件概率是指给定某个类别 \( C \),观察到特定特征值 \( X=x \) 的概率,通常表示为 \( P(X=x|C) \)[^1]。它是贝叶斯公式的重要组成部分之一,在机器学习领域尤其是朴素贝叶斯分类器中被广泛应用。 #### 贝叶斯公式的表达形式 贝叶斯公式可以写成如下形式: \[ P(C|X) = \frac{P(X|C)P(C)}{\sum_{i} P(X|C_i)P(C_i)} \] 其中: - \( P(C|X) \) 是后验概率,表示在观测到数据 \( X \) 后属于类别 \( C \) 的概率; - \( P(X|C) \) 即为类条件概率,表示在类别 \( C \) 下观测到 \( X \) 的可能性[^2]; - \( P(C) \) 是先验概率,表示类别 \( C \) 出现的概率; - 分母部分通过全概率公式计算得到,用于归一化整个概率分布[^3]。 #### 如何计算类条件概率? 在实际应用中,特别是对于连续型变量,假设特征服从某种概率分布(如高斯分布),可以通过最大似然估计或其他参数估计技术拟合该分布的参数。例如: 如果假定特征 \( X \) 在类别 \( C_k \) 中服从正态分布,则其密度函数可由下式给出: \[ P(X=x|C_k) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{(x-\mu_k)^2}{2\sigma_k^2}} \] 这里 \( \mu_k, \sigma_k \) 表示第 \( k \) 类的数据均值标准差[^4]。 当处理离散型随机变量时,可以直接利用频率统计的方式估算每种可能取值下的条件概率。 #### Python 实现示例 下面是一个简单的 Python 示例展示如何手动计算类条件概率并应用于朴素贝叶斯模型预测过程的一部分: ```python import numpy as np def gaussian_pdf(x, mean, std_dev): """ 高斯分布的概率密度函数 """ exponent = np.exp(-((x-mean)**2 / (2 * std_dev**2))) return (1 / (np.sqrt(2 * np.pi) * std_dev)) * exponent # 假设我们有两个类别以及它们对应的训练样本统计数据 class_stats = { 'Class_0': {'mean': 5.0, 'std_dev': 1.0}, 'Class_1': {'mean': 7.0, 'std_dev': 1.5} } test_sample_value = 6.0 # 对每个类别分别计算类条件概率 probs_given_class = {} for cls, stats in class_stats.items(): probs_given_class[cls] = gaussian_pdf(test_sample_value, stats['mean'], stats['std_dev']) print(probs_given_class) ``` 此代码片段展示了针对测试样例 `test_sample_value` 使用两个不同类别的高斯分布来评估各自的类条件概率[^5]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值