条件概率、全概率公式和贝叶斯公式

1. 条件概率

我么可以看到 P(B|A) ≠ P(B)

P(B|A) 叫做A发生的条件下B发生的概率,所以以这个就叫做条件概率

这里一定要把可列可加性看懂。。。

对上面这个推导做一下解释

对于上面的④来说进一步化简得

条件概率的定义已经给出了,现在把条件概率重新写一下,就可以得到乘法公式

上图很有用,一会说贝叶斯定理会用到。

2. 全概率公式

我们先来回顾一下,在上篇文章中讲的条件概率的公式:

现在手动推一下全概率公式:

全概率公式的意义:

 

 全概率公式的例题:加深理解

3. 贝叶斯公式

这就是贝叶斯公式的推到。由条件概率出发,分子通过一步条件概率变形,分母通过全概率公式变形。重点:不必分子分母同时变形,只变其中之一也行。所以就有了下面公式:

贝叶斯公式的意义:

例子:

接下来借这个例子说说先验概率和后验概率,概率模型的机器学习算法,包括深度学习中都是用的概率,所以这个一定要弄清楚

参考地址:

1.5 条件概率Conditional Probability - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/356465557 全概率公式、贝叶斯公式 - 知乎 (zhihu.com)https://zhuanlan.zhihu.com/p/78297343

### 条件概率公式及其定义 条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。其数学表达形式如下: 设 \( A \) \( B \) 是两个随机事件,且 \( P(B) > 0 \),则事件 \( A \) 在事件 \( B \) 发生的条件下的条件概率表示为: \[ P(A|B) = \frac{P(AB)}{P(B)} \] 其中: - \( P(A|B) \) 表示在事件 \( B \) 已经发生的情况下,事件 \( A \) 的条件概率; - \( P(AB) \) 表示事件 \( A \) 事件 \( B \) 同时发生的联合概率; - \( P(B) \) 表示事件 \( B \) 单独发生的概率。 此公式的核心在于通过分母中的 \( P(B) \) 对分子中的联合概率进行了归一化处理[^1]。 --- ### 条件概率的应用场景 #### 数据分析领域 在数据分析中,条件概率被广泛用于评估不同特征之间的关联程度。例如,在分类模型训练过程中,可以通过计算给定某些输入特征下目标类别的条件概率来预测类别标签[^2]。 #### 自然语言处理 (NLP) 自然语言处理中的许多算法依赖于条件概率的概念。比如,在构建语言模型时,通常会估计某个单词序列出现的可能性,这涉及多个连续词之间条件关系的概率建模。具体而言,n-gram 模型就是一个典型例子,它基于前 n-1 个词语推测下一个词语的概率分布[^3]。 ```python import math def calculate_conditional_probability(p_ab, p_b): """ 计算条件概率 P(A|B) 参数: p_ab: float, 联合概率 P(AB) p_b: float, 边际概率 P(B) 返回: conditional_prob: float, 条件概率 P(A|B) """ if p_b == 0: raise ValueError("分母 P(B) 不应为零") conditional_prob = p_ab / p_b return conditional_prob # 示例数据 p_ab_example = 0.15 p_b_example = 0.5 result = calculate_conditional_probability(p_ab_example, p_b_example) print(f"P(A|B): {result}") ``` 上述代码片段展示了如何实现简单的条件概率计算函数,并提供了一个具体的数值实例演示。 --- ### §相关问题§ 1. 如何推导全概率公式? 2. 贝叶斯公式条件概率的关系是什么? 3. 在实际工程中有哪些常见的条件概率应用场景? 4. 如果联合概率难以获取,是否有其他替代方法估算条件概率? 5. 条件概率是否适用于离散连续两种类型的随机变量?如果适用,两者有何区别?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值