计组PTA8

  1. 当采用(__)对设备进行编址情况下,不需要专门的I/O指令。
    选项:A. 单独编址法;B. 两者都是;C. 统一编址法;D. 两者都不是
    答案:C

  2. 中断技术的关键是设备主动向( )报告中断请求。
    选项:A. Cache;B. CPU;C. 存储器;D. ALU
    答案:B

  3. 数据传输控制方式不包括下列的( )。
    选项:A. 程序中断控制方式;B. 间接存储器访问方式;C. 程序控制方式;D. 通道方式
    答案:B

  4. 以下中断服务程序的流程正确的是()。
    选项:A. 保护现场,中断服务,恢复现场,中断返回;B. 保护现场,中断服务,中断返回,恢复现场;C. 中断服务,保护现场,恢复现场,中断返回;D. 中断服务,保护现场,中断返回,恢复现场
    答案:A

  5. 适合于高速设备的信息交换方式是( )。
    选项:A. 程序中断方式;B. 无条件传送方式;C. 程序查询方式;D. DMA方式
    答案:D

  6. 主机与设备传送数据时,采用______,主机与设备是串行工作的。
    选项:A. 程序查询方式;B. 中断方式;C. DMA 方式;D. 通道
    答案:A

  7. 周期挪用方式常用于____方式的输入/输出中。
    选项:A. DMA;B. 中断;C. 程序传送;D. 通道
    答案:A

  8. 下列关于 I/O 控制方式的叙述中,错误的是:
    选项:A. 查询方式下,通过 CPU 执行查询程序进行 I/O 操作;B. 中断方式下,通过 CPU 执行中断服务程序进行 I/O 操作;C. DMA 方式下,通过 CPU 执行 DMA 传送程序进行 I/O 操作;D. 对于 SSD、网络适配器等高速设备,采用 DMA 方式输入/输出
    答案:C

  9. DMA 控制 I/O 方式下,设备的输入/输出由 DMA 控制器控制完成,此时,DMA 控制器控制的数据传输通路位于
    选项:A. CPU 和主存之间;B. CPU 和 DMA 控制器之间;C. 设备接口和主存之间;D. 设备接口和 DMA 控制器之间
    答案:C

  10. 将数据逐位顺序以脉冲方式传送,一次只能传送一个比特位的数据传输方式是( )。
    选项:A. 并行传输;B. 突发传输;C. 串行传输;D. 同步传输
    答案:C

  11. 下列选项中,属于输入设备的是( )。
    选项:A. 鼠标;B. 显示屏;C. 扬声器;D. 打印机
    答案:A

### PTA 商高定理 编程题解法 #### 题目背景 在中国古代数学史中,商高的贡献被记载于《周髀算经》之中[^1]。其中提到的“勾三股四弦五”,即著名的勾股定理(又称毕达哥拉斯定理),描述了一个直角三角形两条直角边与其斜边之间的关系: \[ a^2 + b^2 = c^2 \] 在编程平台PTA上,可能会设一些题目来验证学生对于这一经典数学理论的理解以及将其转化为程序的能力。 --- #### 可能涉及的PTA题目类型 以下是基于商高定理可能设置的一些典型编程练习: ##### 1. **判断输入是否构成勾股数** 编写一个函数 `is_pythagorean(a, b, c)` 来检测三个整数 \(a\)、\(b\) 和 \(c\) 是否满足勾股定理的关系。如果满足,则返回 True;否则返回 False。 ```python def is_pythagorean(a, b, c): sides = sorted([a, b, c]) # 排序以确保最大值作为斜边 return sides[0]**2 + sides[1]**2 == sides[2]**2 ``` 上述实现通过先对三条边进行排序,从而保证最长的一条边总是被视为斜边,并对其进行平方运算比较得出结论。 --- ##### 2. **寻找给定范围内的所有勾股数** 要求找出指定区间 `[m, n]` 中所有的正整数勾股数 (a,b,c),并按照字典顺序输出结果列表。 ```python def find_all_pythagorean(m, n): result = [] for a in range(m, n+1): for b in range(a, n+1): # 确保 b >= a 减少重复算 c_square = a**2 + b**2 c = int(c_square**0.5) if c > b and c <= n and c*c == c_square: result.append((a, b, c)) return result ``` 这段代码利用双重循环遍历每一对可能成为直角边合的情况,再依据条件筛选符合条件的结果集。 --- ##### 3. **求最小勾股数列中的特定项** 假设已知某基本勾股数 `(p,q,r)` ,定义其倍增序列 `{k*p,k*q,k*r | k ∈ N}` 。现需找到该系列中小于等于某个上限 L 的成员总数。 ```python def count_multiples(p, q, r, limit): max_k = min(limit//p, limit//q, limit//r) return max_k ``` 这里采用简单的除法操作快速定位能够容纳的最大系数 K 值,进而得到最终数值。 --- #### 总结说明 以上三种类型的习题涵盖了从基础逻辑判断到复杂枚举算法的不同难度层次,旨在帮助学习者深入理解并灵活运用古人的智慧结晶—商高定理的实际意义及其现代延伸应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值