机器学习
LiuLllDDdd
这个作者很懒,什么都没留下…
展开
-
FSOD with Attention-RPN and Multi-Relation 推理过程
测试过程在少样本目标检测任务中,训练过程每次输入的是一个episode,也就是有一张query image需要检测对象,以及20张support images提供类别信息。在support images中,一共有2个类别,一个类别10张图片。在训练时会确保一个类和query image相同,一个类别和它不同。训练时模型的任务就是找到query image中属于support images类别的对象,然而在测试的时候每张图片需要和20个类别的support features做对比。总体流程如下:每个类原创 2020-12-09 15:06:12 · 552 阅读 · 0 评论 -
PyTorch读取目标检测数据集
数据集介绍一般的目标检测数据集由两部分组成,图片images和标签annotations。由少样本目标检测数据集FSOD为例。FSOD数据集组成图片部分就不多介绍了,重点来看一下标记部分annotation,对于图片的标记数据一般用json格式保存。上面的图片是FSOD测试集的标记数据,以字典的形式保存,Keys分别为:images: Values是一个列表,长度即测试集图片的数量。列表中的每个元素对应一个图片的数据, 例如id, file_name, width, heighttype:原创 2020-07-21 11:25:14 · 1963 阅读 · 0 评论 -
BP算法实现--minst手写数字数据集识别
实验步骤初始化网络架构网络层数,每层神经元数,连接神经元的突触权重,每个神经元的偏置构造bp算法函数对于一个输入数据,前向计算每层的输出值,保存未激活的输出和激活过的输出值,这里用的激活函数是sigmoid根据最后一层的输出值计算出相应的δ,再依次反向计算对应层的δ。根据得到的δ,可以得到每层的Δw和Δb。更新网络中w , b遍历训练集中的每个训练样本,每个样本通过bp算法所得到...原创 2019-10-14 12:17:12 · 4718 阅读 · 0 评论 -
三、多变量线性回归
上次学习的单变量回归模型是针对一个特征(变量)而言的,在实际情况中一个样本应该有多种特征,还是拿房价举例。这时候房价有多个特征,包括**面积、房间数量、楼层高度、房龄,**最后还有各自对应的价格。注:nnn = 特征的数量x(i)x^{(i)}x(i) = 输入的ithi^{th}ith训练样本xj(i)x_j^{(i)}xj(i) = ithi^{th}ith训练样本的jjj特征值...原创 2019-09-14 09:53:49 · 2493 阅读 · 0 评论