Dynamic Relevance Learning for Few-Shot Object Detection Readme

这篇博客介绍了动态相关学习(Dynamic Relevance Learning)在少样本目标检测中的PyTorch实现,包括论文介绍、环境配置、数据准备、训练、微调和测试流程。作者提供了基于PASCAL VOC和COCO数据集的详细说明,以及预训练模型和性能结果。
摘要由CSDN通过智能技术生成

# Dynamic Relevance Learning for Few-Shot Object Detection

(arXiv) PyTorch implementation of paper “Dynamic Relevance Learning for Few-Shot Object Detection”
[PDF]

teaser

Tabel of Contents

Installation

Code built on top of Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild.

Requirements

  • CUDA 9.0
  • Python=3.6
  • PyTorch=0.4.0
  • torchvision=0.2.1
  • gcc >= 4.9

Build

Create conda env:

conda create --name FSdetection --file spec-file.txt
conda activate FSdetection

Compile the CUDA dependencies:

cd {repo_root}/lib
sh make.sh

Data Preparation

We evaluate our method on two

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值