总结:二分查找(下)
一、四种常见的二分查找变形问题
16|二分查找(下):如何快速定位IP对应的省份地址?
file:///J/geektime/唯一更新QQ群170701297/ebook/数据结构与算法之美/16二分查找(下):如何快速定位IP对应的省份地址?.html[2019/2/17 17:27:19]
1.查找第一个值等于给定值的元素
2.查找最后一个值等于给定值的元素
3.查找第一个大于等于给定值的元素
4.查找最后一个小于等于给定值的元素
二、适用性分析
1.凡事能用二分查找解决的,绝大部分我们更倾向于用散列表或者二叉查找树,即便二分查找在内存上更节省,但是毕竟内存如此紧缺的情况并不多。
2.求“值等于给定值”的二分查找确实不怎么用到,二分查找更适合用在”近似“查找问题上。比如上面讲几种变体。
三、思考
1.如何快速定位出一个IP地址的归属地?
[202.102.133.0, 202.102.133.255] 山东东营市
[202.102.135.0, 202.102.136.255] 山东烟台
[202.102.156.34, 202.102.157.255] 山东青岛
[202.102.48.0, 202.102.48.255] 江苏宿迁
[202.102.49.15, 202.102.51.251] 江苏泰州
[202.102.56.0, 202.102.56.255] 江苏连云港
假设我们有 12 万条这样的 IP 区间与归属地的对应关系,如何快速定位出一个IP地址的归属地呢?
2.如果有一个有序循环数组,比如4,5,6,1,2,3。针对这种情况,如何实现一个求“值等于给定值”的二分查找算法?
有三种方法查找循环有序数组
一、
- 找到分界下标,分成两个有序数组
- 判断目标值在哪个有序数据范围内,做二分查找
二、 - 找到最大值的下标 x;
- 所有元素下标 +x 偏移,超过数组范围值的取模;
- 利用偏移后的下标做二分查找;
- 如果找到目标下标,再作 -x 偏移,就是目标值实际下标。
两种情况最高时耗都在查找分界点上,所以时间复杂度是 O(N)。
16|二分查找(下):如何快速定位IP对应的省份地址?
file:///J/geektime/唯一更新QQ群170701297/ebook/数据结构与算法之美/16二分查找(下):如何快速定位IP对应的省份地址?.html[2019/2/17 17:27:19]
复杂度有点高,能否优化呢?
三、
我们发现循环数组存在一个性质:以数组中间点为分区,会将数组分成一个有序数组和一个循环有序数组。
如果首元素小于 mid,说明前半部分是有序的,后半部分是循环有序数组;
如果首元素大于 mid,说明后半部分是有序的,前半部分是循环有序的数组;
如果目标元素在有序数组范围中,使用二分查找;
如果目标元素在循环有序数组中,设定数组边界后,使用以上方法继续查找。
时间复杂度为 O(logN)。