文章目录
01:与指定数字相同的数的个数
总时间限制: 1000ms 内存限制: 65536kB
描述
输出一个整数序列中与指定数字相同的数的个数。
输入
输入包含三行:第一行为N,表示整数序列的长度(N <= 100);第二行为N个整数,整数之间以一个空格分开;第三行包含一个整数,为指定的整数m。
输出
输出为N个数中与m相同的数的个数。
样例输入
3
2 3 2
2
样例输出
2
参考代码
#include<iostream>
using namespace std;
int main(){
int n, c=0, num;
cin >> n;
int m[n];// 定义数组
for(int i=0;i<n;i++){// 将输入保存到数组中。
cin >> m[i];
}
cin >> num;
for(int i=0;i<n;i++){//循环遍历数组
if(m[i]==num)c++;//如果相同 计数
}
cout << c <<endl;
return 0;
}
02:陶陶摘苹果
总时间限制: 1000ms 内存限制: 65536kB
描述
陶陶家的院子里有一棵苹果树,每到秋天树上就会结出10个苹果。苹果成熟的时候,陶陶就会跑去摘苹果。陶陶有个30厘米高的板凳,当她不能直接用手摘到苹果的时候,就会踩到板凳上再试试。现在已知10个苹果到地面的高度,以及陶陶把手伸直的时候能够达到的最大高度,请帮陶陶算一下她能够摘到的苹果的数目。假设她碰到苹果,苹果就会掉下来。
输入
包括两行数据。第一行包含10个100到200之间(包括100和200)的整数(以厘米为单位)分别表示10个苹果到地面的高度,两个相邻的整数之间用一个空格隔开。第二行只包括一个100到120之间(包含100和120)的整数(以厘米为单位),表示陶陶把手伸直的时候能够达到的最大高度。
输出
包括一行,这一行只包含一个整数,表示陶陶能够摘到的苹果的数目。
样例输入
100 200 150 140 129 134 167 198 200 111
110
样例输出
5
参考代码
#include<iostream>
using namespace std;
int main(){
const int b=30;//板凳高度
int a[10], h, count=0;
for(int i=0;i<10;i++){
cin >> a[i];//将输入保存到数组中
}
cin >> h;
for(int i=0;i<10;i++){//循环遍历数据,根据条件进行计数
if(h+b>=a[i])count++;
}
cout << count << endl;
return 0;
}
03:计算书费
总时间限制: 1000ms 内存限制: 65536kB
描述
下面是一个图书的单价表:
计算概论 28.9 元/本
数据结构与算法 32.7 元/本
数字逻辑 45.6元/本
C++程序设计教程 78 元/本
人工智能 35 元/本
计算机体系结构 86.2 元/本
编译原理 27.8元/本
操作系统 43 元/本
计算机网络 56 元/本
JAVA程序设计 65 元/本
给定每种图书购买的数量,编程计算应付的总费用。
输入
输入一行,包含10个整数(大于等于0,小于等于100),分别表示购买的《计算概论》、《数据结构与算法》、《数字逻辑》、《C++程序设计教程》、《人工智能》、《计算机体系结构》、《编译原理》、《操作系统》、《计算机网络》、《JAVA程序设计》的数量(以本为单位)。每两个整数用一个空格分开。
输出
输出一行,包含一个浮点数f,表示应付的总费用。精确到小数点后一位。
样例输入
1 5 8 10 5 1 1 2 3 4
样例输出
2140.2
参考代码
#include<iostream>
#include<iomanip>
using namespace std;
int main(){
float b[10]={28.9, 32.7, 45.6, 78, 35, 86.2, 27.8, 43, 56, 65},s=0;//数组中保存书的价格
int c;
for(int i=0;i<10;i++){
cin >> c;//输入数量
s+=b[i]*c;//计算总价
}
cout << fixed << setprecision(1) << s << endl;
return 0;
}
04:数组逆序重放
总时间限制: 1000ms 内存限制: 65536kB
描述
将一个数组中的值按逆序重新存放。例如,原来的顺序为8,6,5,4,1。要求改为1,4,5,6,8。
输入
输入为两行:第一行数组中元素的个数n(1<n<100),第二行是n个整数,每两个整数之间用空格分隔。
输出
输出为一行:输出逆序后数组的整数,每两个整数之间用空格分隔。
样例输入
5
8 6 5 4 1
样例输出
1 4 5 6 8
参考代码
#include<iostream>
#include<iomanip>
using namespace std;
int main(){
int n, m[100];
cin >> n;
for(int i=0;i<n;i++){//将输入保存到数组中,索引值从0到n-1
cin >> m[i];
}
for(int i=n-1;i>=0;i--){//遍历数组,从索引值n-1到0.实现逆序输出
cout << m[i] << ' ';
}
return 0;
}
05:年龄与疾病
总时间限制: 1000ms 内存限制: 65536kB
描述
某医院想统计一下某项疾病的获得与否与年龄是否有关,需要对以前的诊断记录进行整理,按照0-18、19-35、36-60、61以上(含61)四个年龄段统计的患病人数占总患病人数的比例。
输入
共2行,第一行为过往病人的数目n(0 < n <= 100),第二行为每个病人患病时的年龄。
输出
按照0-18、19-35、36-60、61以上(含61)四个年龄段输出该段患病人数占总患病人数的比例,以百分比的形式输出,精确到小数点后两位。每个年龄段占一行,共四行。
样例输入
10
1 11 21 31 41 51 61 71 81 91
样例输出
20.00%
20.00%
20.00%
40.00%
参考代码
#include<iostream>
#include<iomanip>
using namespace std;
int main(){
int a, n, r[4]={0};
cin >> n;
for(int i=0;i<n;i++){
cin >> a;
if(a>=61){
r[3]+=1;
}else if(a>=36){
r[2]+=1;
}else if(a>=19){
r[1]+=1;
}else if(a>=0){
r[0]+=1;
}
}
for(int i=0;i<4;i++){
cout << fixed << setprecision(2) << r[i]*100.0/n << '%' << endl;
}
return 0;
}
06:校门外的树
总时间限制: 1000ms 内存限制: 65536kB
描述
某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米。我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置;数轴上的每个整数点,即0,1,2,……,L,都种有一棵树。由于马路上有一些区域要用来建地铁。这些区域用它们在数轴上的起始点和终止点表示。已知任一区域的起始点和终止点的坐标都是整数,区域之间可能有重合的部分。现在要把这些区域中的树(包括区域端点处的两棵树)移走。你的任务是计算将这些树都移走后,马路上还有多少棵树。
输入
第一行有两个整数L(1 <= L <= 10000)和 M(1 <= M <= 100),L代表马路的长度,M代表区域的数目,L和M之间用一个空格隔开。接下来的M行每行包含两个不同的整数,用一个空格隔开,表示一个区域的起始点和终止点的坐标。对于20%的数据,区域之间没有重合的部分;对于其它的数据,区域之间有重合的情况。
输出
包括一行,这一行只包含一个整数,表示马路上剩余的树的数目。
样例输入
500 3
150 300
100 200
470 471
样例输出
298
参考代码
#include<iostream>
using namespace std;
int s[10000];//全局变量(编译器会将全局、静态变量放入BSS段(这是全零的内存段),所以会被默认初始化为0)
int l,m,count;
int main(){
cin >> l >> m;
for(int i=0;i<m;i++){
int a,b;//占用的区间
cin >> a >> b;
for(int j=a;j<=b;j++){//将这个区间所有值变为1,代表树木被移走了。
s[j]=1;
}
}
for(int i=0;i<=l;i++){//循环遍历,注意范围0到l,包含l
if(s[i]==0)count++;//如果是0,代表还有树木,计数。
}
cout << count;
return 0;
}
07:有趣的跳跃
总时间限制: 1000ms 内存限制: 65536kB
描述
一个长度为n(n>0)的序列中存在“有趣的跳跃”当前仅当相邻元素的差的绝对值经过排序后正好是从1到(n-1)。例如,1 4 2 3存在“有趣的跳跃”,因为差的绝对值分别为3,2,1。当然,任何只包含单个元素的序列一定存在“有趣的跳跃”。你需要写一个程序判定给定序列是否存在“有趣的跳跃”。
输入
一行,第一个数是n(0 < n < 3000),为序列长度,接下来有n个整数,依次为序列中各元素,各元素的绝对值均不超过1,000,000,000。
输出
一行,若该序列存在“有趣的跳跃”,输出"Jolly",否则输出"Not jolly"。
样例输入
4 1 4 2 3
样例输出
Jolly
参考代码
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=3000;
int n, m, a[maxn], b[maxn];
bool flag=true;
int main(){
cin >> n;
for(int i=0;i<n;i++){
cin >> a[i];
}
for(int j=1;j<n;j++){
int d = abs(a[j]-a[j-1]);//计算绝对值
if(d>0&&d<n){//需要在1到n-1的范围内
b[d]++;//记录差值d出现的次数
if(b[d]>1){//出现次数大于1,不存在有趣跳跃
flag=false;
break;
}
}else{//如果绝对值不在1到n-1的范围,结束循环。不存在有趣的跳跃
flag=false;
break;
}
}
if(n==1||flag){//单个元素,或者flag为true。则存在有趣跳跃
cout << "Jolly";
}else{
cout << "Not jolly";
}
return 0;
}
08:石头剪刀布
总时间限制: 1000ms 内存限制: 65536kB
描述
石头剪刀布是常见的猜拳游戏。石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。一天,小A和小B正好在玩石头剪刀布。已知他们的出拳都是有周期性规律的,比如:“石头-布-石头-剪刀-石头-布-石头-剪刀……”,就是以“石头-布-石头-剪刀”为周期不断循环的。请问,小A和小B比了N轮之后,谁赢的轮数多?
输入
输入包含三行。第一行包含三个整数:N,NA,NB,分别表示比了N轮,小A出拳的周期长度,小B出拳的周期长度。0 < N,NA,NB < 100。第二行包含NA个整数,表示小A出拳的规律。第三行包含NB个整数,表示小B出拳的规律。其中,0表示“石头”,2表示“剪刀”,5表示“布”。相邻两个整数之间用单个空格隔开。
输出
输出一行,如果小A赢的轮数多,输出A;如果小B赢的轮数多,输出B;如果两人打平,输出draw。
样例输入
10 3 4
0 2 5
0 5 0 2
样例输出
A
提示
对于测试数据,猜拳过程为:A:0 2 5 0 2 5 0 2 5 0B:0 5 0 2 0 5 0 2 0 5A赢了4轮,B赢了2轮,双方打平4轮,所以A赢的轮数多。
参考代码
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=110;
int n, na, nb, wa, wb;//wa,wb分别记录a和b胜利次数
int a[maxn], b[maxn];
int main(){
cin>>n>>na>>nb;
for(int i=1;i<=na;i++){//记录a的规律
cin >> a[i];
}
for(int i=1;i<=nb;i++){//记录b的规律
cin >> b[i];
}
for(int j=1;j<=n;j++){
int ai=j%na==0?na:j%na;//通过求余数取出对应轮次a的出拳索引值
int bi=j%nb==0?nb:j%nb;//通过求余数取出对应轮次b的出拳索引值
if(a[ai]!=b[bi]){//如果出拳不同再判断,相同为平局没有统计必要
if(a[ai]+b[bi]==5){//如果和为5,即一个除了石头一个出了布
if(a[ai]==0)wb++;//出布的胜利
else wa++;
}else{//否则哪个数字小哪个胜利
if(a[ai]>b[bi])wb++;
else wa++;
}
}
}
if(wa>wb)cout<<'A';
else if(wa<wb)cout<<'B';
else cout<<"draw";
return 0;
}
09:向量点积计算
总时间限制: 1000ms 内存限制: 65536kB
描述
在线性代数、计算几何中,向量点积是一种十分重要的运算。给定两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),求点积a·b=a1b1+a2b2+…+anbn。
输入
第一行是一个整数n。1 <= n <= 1000。第二行包含n个整数a1,a2,…,an。第三行包含n个整数b1,b2,…,bn。相邻整数之间用单个空格隔开。每个整数的绝对值都不超过1000。
输出
一个整数,即两个向量的点积结果。
样例输入
3
1 4 6
2 1 5
样例输出
36
参考代码
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=1010;
int n, a[maxn], b, s;
int main(){
cin>>n;
for(int i=1;i<=n;i++){//记录a1...an
cin>>a[i];
}
for(int j=1;j<=n;j++){//输入b1...bn,并计算乘积和
cin>>b;
s+=a[j]*b;
}
cout<<s<<endl;
return 0;
}
10:大整数加法
总时间限制: 1000ms 内存限制: 65536kB
描述
求两个不超过200位的非负整数的和。
输入
有两行,每行是一个不超过200位的非负整数,可能有多余的前导0。
输出
一行,即相加后的结果。结果里不能有多余的前导0,即如果结果是342,那么就不能输出为0342。
样例输入
22222222222222222222
33333333333333333333
样例输出
55555555555555555555
参考代码
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=210;
char a[maxn], b[maxn];
int n1[maxn], n2[maxn];
int main(){
cin>>a>>b;
int al=strlen(a);
int bl=strlen(b);
int i;
for(i=1;i<=al;i++)n1[i]=a[al-i]-48;//遍历字符数组,将字符串组放到整数数组中,并反转便于计算
for(i=1;i<=bl;i++)n2[i]=b[bl-i]-48;
for(i=1;i<=al||i<=bl;i++){//遍历两个数组,求和
n1[i]+=n2[i];//将和保存到n1中
if(n1[i]>9){//如果产生了进位
n1[i]%=10;//这一位保留个位
n1[i+1]++;//下一位i+1位 进位
}
}
while(n1[i]==0&&i>1)i--;//避免0输出
while(i)cout<<n1[i--];//输出剩下的所有数字
return 0;
}
11:大整数减法
总时间限制: 1000ms 内存限制: 65536kB
描述
求两个大的正整数相减的差。
输入
共2行,第1行是被减数a,第2行是减数b(a > b)。每个大整数不超过200位,不会有多余的前导零。
输出
一行,即所求的差。
样例输入
9999999999999999999999999999999999999
9999999999999
样例输出
9999999999999999999999990000000000000
参考代码
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=210;
char a[maxn], b[maxn];
int n1[maxn], n2[maxn];
int main(){
cin>>a>>b;
int al=strlen(a);
int bl=strlen(b);
int i;
for(i=1;i<=al;i++)n1[i]=a[al-i]-48;//遍历字符数组,将字符串组放到整数数组中,并反转便于计算
for(i=1;i<=bl;i++)n2[i]=b[bl-i]-48;
for(i=1;i<=al||i<=bl;i++){//遍历两个数组,求差
if(n1[i]<n2[i]){//如果被减数该位的数字<减数该位的数字
n1[i+1]--;//向前借一位
n1[i]=10+n1[i]-n2[i];//借位后再做减法
}else{//否则整除相减
n1[i]-=n2[i];
}
}
while(n1[i]==0&&i>1)i--;//避免多余的0输出
while(i)cout<<n1[i--];
return 0;
}
12:计算2的N次方
总时间限制: 1000ms 内存限制: 65536kB
描述
任意给定一个正整数N(N<=100),计算2的n次方的值。
输入
输入一个正整数N。
输出
输出2的N次方的值。
样例输入
5
样例输出
32
提示
高精度计算
参考代码
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=35;
int ans[maxn]={0}, n, temp;
int main(){
cin>>n;
int w=1,i=0,k=0;
ans[0]=2;
if(n==0){//如果是0次方,结果为1
cout<<1;
return 0;
}else if(n==1){//如果是1次方,结果是2
cout<<ans[0];
return 0;
}
while(n-1){
for(i=0;i<35;i++){
ans[i]=ans[i]*2+temp;//temp记录进位, 第i位的结果是,ans[i]*2 再加上进位
if(ans[i]>9){//如果大于9代表产生了进位
ans[i]-=10;//该为减10
temp=1;//进位1
}else{//否则没有产生进位
temp=0;//进位置为0
}
}
n--;
}
i--;
while(!ans[i])i--;//去掉0
while(i>=0){//输出剩下的所有位即为结果
cout<<ans[i];
i--;
}
return 0;
}
13:大整数的因子
总时间限制: 1000ms 内存限制: 65536kB
描述
已知正整数k满足2<=k<=9,现给出长度最大为30位的十进制非负整数c,求所有能整除c的k。
输入
一个非负整数c,c的位数<=30。
输出
若存在满足 c%k == 0 的k,从小到大输出所有这样的k,相邻两个数之间用单个空格隔开;若没有这样的k,则输出"none"。
样例输入
30
样例输出
2 3 5 6
参考代码
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=35;
char ans[maxn];
int main(){
cin>>ans;
int len=strlen(ans);//获取位数
bool flag=false;
for(int i=2;i<10;i++){
int temp=0;//记录每一位的余数
for(int j=0;j<len;j++){
temp=(temp*10+int(ans[j]-48))%i;//(上一位的余数乘10+这一位的数)%i 比如31除以2,首先3除以2余数是1,(1*10+1)%2=1,余数不是0代表不能被整除。
}
if(temp==0){//判断最终的余数,如果是0,代表能被整除,输出这个数字。
cout<<i<<' ';
flag=true;
}
}
if(!flag)cout<<"none";
return 0;
}
14:求10000以内n的阶乘
总时间限制: 1000ms 内存限制: 65536kB
描述
求10000以内n的阶乘。
输入
只有一行输入,整数n(0<=n<=10000)。
输出
一行,即n!的值。
样例输入
100
样例输出
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
参考代码
#include <iostream>
#include <cstdio>
using namespace std;
int main()
{
int a[100000]={1};//a[0]=1
int n, l=1, t=0;
cin>>n;
for(int i=2;i<=n;i++){//从2乘到n
for(int j=0;j<l;j++){
a[j]=a[j]*i+t;//每一位乘以数字i,再加上进位
if(a[j]>9){//如果结果大于9,代表存在进位
t=a[j]/10;//计算进位值
a[j]%=10;//保留个位
}else{
t=0;//不存在进位,将进位设为0
}
}
while(t){//每乘一次数字,将进位计算完,变为数组的每一位
a[l]=t%10;//新的一位
t/=10;//将进位的个位去除
l++;//将数字长度增加
}
}
for(int i=l-1;i>=0;i--){//根据数字长度,倒叙输出所有数字
cout << a[i];
}
return 0;
}
15:阶乘和
总时间限制: 1000ms 内存限制: 65536kB
描述
用高精度计算出S=1!+2!+3!+…+n!(n≤50)其中“!”表示阶乘,例如:5!=54321。输入正整数N,输出计算结果S。
输入
一个正整数N。
输出
计算结果S。
样例输入
5
样例输出
153
参考代码
#include <iostream>
using namespace std;
int main()
{
// 将每个数的阶乘保存到一个数组中,将和保存到一个数组中
int a[100000]={1}, s[100000]={1};
int n, al=1, sl=1, t=0;
cin>>n;
for(int i=2;i<=n;i++){
for(int j=0;j<al;j++){//计算阶乘
a[j]=a[j]*i+t;//t为进位
if(a[j]>9){//存在进位
t=a[j]/10;
a[j]%=10;
if(j+1>al)al=j+1; //计算阶乘数组的长度
}else{//不存在进位
t=0;
}
}
while(t){//计算结束,计算进位
a[al]=t%10;
t/=10;
al++;
}
for(int k=0;k<al||k<sl;k++){//计算和
s[k]+=a[k];
if(s[k]>9){//存在进位
s[k+1]++;//后一位+1
s[k]%=10;//本位保留个位数
}
if(k+1>sl)sl=k+1;//计算和数组的长度
}
}
for(int i=sl-1;i>=0;i--){
cout<<s[i];
}
return 0;
}