同余和模运算

(a+b)modn=(amond+bmodn)modn;

(a-b)modn=(amodn-bmodn+n)modn;

abmodn=((almond)(bmodn))modn;

在乘法中(almond)(bmodn)可能会溢出,所以要用long long 来保存;如:

int mul_mod(int a,int b,int n)
{
	a=a%n;b=b%n;
	return (int)((long long)(a*b)%n)
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值