这题麻烦的是怎么求最小改变原配边数,把所有边的权值乘55,然后原配遍+1,那么最后获得的权值对55取模就是最大权值匹配的二分图中留下来的原配边数量了。
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=50+5;
char map[maxn][maxn];
int w[maxn][maxn],n,m;
int lx[maxn],ly[maxn];
int Left[maxn];
bool s[maxn],t[maxn];
int to[maxn];
bool match(int i)
{
s[i]=true;
for(int j=1;j<=m;j++) if(lx[i]+ly[j]==w[i][j]&&!t[j]){
t[j]=true;
if(Left[j]==-1||match(Left[j])){
Left[j]=i;
return true;
}
}
return false;
}
void update()
{
int a=(1<<30);
for(int i=1;i<=n;i++) if(s[i])
for(int j=1;j<=m;j++) if(!t[j])
a=min(a,lx[i]+ly[j]-w[i][j]);
for(int i=1;i<=n;i++) if(s[i]) lx[i]-=a;
for(int i=1;i<=m;i++) if(t[i]) ly[i]+=a;
}
void KM()
{
memset(Left,-1,sizeof(Left));
memset(lx,0,sizeof(lx));
memset(ly,0,sizeof(ly));
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++)
lx[i]=max(lx[i],w[i][j]);
}
for(int i=1;i<=n;i++){
for(;;)
{
memset(s,0,sizeof(s));
memset(t,0,sizeof(t));
if(match(i)) break;else update();
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int z;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&z);
w[i][j]=z*55;
}
}
int old=0;
for(int i=1;i<=n;i++) {scanf("%d",&to[i]);w[i][to[i]]+=1;old+=w[i][to[i]];}
KM();
int ans=0;
for(int i=1;i<=m;i++) if(Left[i]!=-1) ans+=w[Left[i]][i];
printf("%d %d\n",n-ans%55,ans/55-old/55);
}
return 0;
}