- 博客(192)
- 资源 (1)
- 收藏
- 关注
原创 怎么快速上手虚拟化(容器)技术——以 Docker 为例
所谓容器,实际上是一种虚拟化技术,用于为应用提供虚拟化的运行环境,相较于虚拟机具有轻量级、低延迟的特性。
2024-03-31 21:22:07
1254
1
原创 ARMv8高速缓存(Cache)和内存管理单元(MMU)
Cache弥补取速率差异。MMU控制Cache策略、内存属性、访问权限并提供虚拟地址映射功能。
2023-02-04 19:14:43
2830
原创 怎样编写裸片启动程序-ARMv8的Boot Code和ROM程序
裸片是如何Boot(启动)起来的?Flash里的程序是怎么被加载到RAM中的?
2022-11-05 00:28:29
4203
8
原创 探寻摩尔的秘密花园 存算一体的真正起点 经典论文PRIME ReRAM 设计导读
PRIME的成功在于,它并非一个简单的“内存旁边加计算”的PIM方案,而是一个“内存即计算”的颠覆性设计。它巧妙地利用了ReRAM的物理特性,将计算完美地嵌入到存储结构中,从原理上规避了冯·诺依曼瓶颈,为数据密集型的神经网络应用提供了兼具高性能、高能效和低成本潜力的解决方案。在PRIME的计算模式下,权重数据已经预先存储在ReRAM单元中,输入数据则通过芯片内部的高带宽路径从相邻的缓冲子阵列(Buffer Subarray)直接送入计算阵列。这意味着计算是分布在巨大的内存阵列上进行的,实现了极高的并行度。
2026-01-29 22:35:24
430
原创 嵌入式论文投稿与参考:从顶刊到开源,这些期刊你必须知道
选择适合的期刊,本质上是为你的研究或学习绘制一张效率地图。作为嵌入式领域的内容创作者,对信息源的筛选能力本身就是价值所在——帮助读者从海量信息中直达核心。无论你是准备投稿的研究者,还是希望提升内容深度的博主,这张期刊图谱都能为你提供清晰的导航。从理论前沿到工程实践,从顶刊权威到开源平台,嵌入式世界的知识脉络尽在其中。你最常参考或最感兴趣的嵌入式期刊是哪一类?在实际使用中有何心得体会?欢迎在评论区分享交流。关注太白断水客的视频站 跟踪最新实验动态。
2026-01-28 20:57:50
550
原创 搭建ARM LINUX 内核 QEMU 仿真调试环境
获取内核源码:wget https://mirrors.tuna.tsinghua.edu.cn/kernel/v6.x/linux-6.1.80.tar.xz。arch/x86/boot/bzImage # 对于x86_64。arch/arm64/boot/Image # 对于ARM64。arch/arm/boot/zImage # 对于ARM。2.1 最常见的内核镜像文件(具体名称取决于架构和配置)静态链接的不需要复制so文件。3.2 制作根文件系统。
2026-01-22 21:44:21
152
原创 如何在手机上搭建Linux学习环境
下面是针对 ARM 架构学习 Linux 内存子系统,可以进行本机编译和调试的环境搭建步骤。核心思路就用TERMUX提供的Linux平台搭建编译仿真环境。
2025-11-21 22:03:00
908
原创 光子计算突破:3ns超低延迟AI加速器精读分析:自然《一种具有超低延迟的大规模集成光子加速器》
本研究通过16,000+光子元件集成(商业65nm硅光工艺)与2.5D先进封装,首次实现64×64光学矩阵乘加运算(oMAC),单周期延迟仅3ns,比传统TPU加速器提升两个数量级。本文报道了一种突破性的大规模集成光子计算系统,通过创新的光电协同设计与先进封装技术,在计算延迟和能效方面实现了数量级提升。• 光电协同芯片:光子芯片(PIC)处理线性运算,电子芯片(EIC,28nm CMOS)实现逻辑控制与存储。• 点积运算误差:0.06 LSB(均值),1.18 LSB(标准差)
2025-10-01 22:23:49
670
原创 DecDEC论文精读:动态误差补偿的低比特LLM推理优化方案
大型语言模型(LLM)的部署面临内存和延迟挑战,量化技术通过降低精度缓解这一问题,但低比特量化(如3-bit/4-bit)会导致明显的模型质量下降。本文提出DecDEC(Decoding with Dynamic Error Compensation),一种在保持量化优势(GPU内存节省、延迟降低)的同时,通过CPU内存动态补偿量化误差的推理方案。DecDEC在CPU中存储残差矩阵(全精度权重与量化权重的差值),在解码阶段动态获取与显著通道(由激活异常值标记)对应的残差,补偿这些通道的量化误差。
2025-09-24 23:30:37
773
原创 如何自动生成ONNX模型?
95%的实战场景:直接用 torch.onnx.export或 tf2onnx自动转换。特殊需求才需要手动编写ONNX(如你的代码),但需注意手动编写容易出错(例如形状不匹配)。需要熟悉ONNX的算子规范(如支持哪些操作、属性如何设置)。
2025-09-23 23:09:45
239
原创 Aquatope论文精读:面向多阶段无服务器工作流的QoS与不确定性感知资源管理
Aquatope通过创新的贝叶斯方法,显著提升了多阶段无服务器工作流的性能预测性和资源效率。这项工作为无服务器计算提供了重要的资源管理框架,特别适合现代复杂的多阶段无服务器应用场景,对云服务提供商和用户都具有重要实用价值。波动负载处理:对于高波动性负载(CV>1),Aquatope比IceBreaker减少13%-41%冷启动。资源效率:相比随机搜索、自动缩放和CLITE等方法,Aquatope平均减少34%成本,最高达52%噪声鲁棒性:在存在系统噪声的情况下,Aquatope仍能找到接近最优的资源配置。
2025-09-21 14:12:14
947
原创 普通散户如果买个量化交易程序来炒股,是不是可以躺赢了?
策略在样本内(In-Sample)数据上表现优异,但一旦应用于未来的样本外(Out-of-Sample)数据,表现会急剧下滑,这种现象称为策略衰减 (Strategy Decay)。:如果对量化交易有浓厚兴趣,应将其作为一门学科来学习(编程、统计学、计量经济学、金融理论),而非作为一个产品来购买。核心观点:策略的理论收益和实际实现收益之间的差距,主要来自交易成本(佣金、印花税)和滑点 (Slippage)。核心观点:金融市场是一个动态演化的生态系统。
2025-09-14 20:34:00
1020
原创 自学C语言是推荐照着课本或实体书来还是照着网上找的课来?
如果你想成为一个真正理解底层原理、拥有扎实基本功的程序员,就必须耐下性子啃透一本经典教材。 网络课程是绝佳的“引路人”和“润滑剂”,能让你学得更轻松、更直观,但绝不能替代教材成为你唯一的知识来源。从现在开始,就选择一本好书,坚持下去。这为你未来学习数据结构、操作系统等核心课程将带来巨大的优势。祝您学习顺利!
2025-09-14 20:30:49
856
原创 无需bootloader,BootROM -> Linux Kernel 启动模式
一种非常优雅且高效的引导方案,它代表了嵌入式系统引导流程的“终极简化”
2025-09-05 22:46:48
999
原创 一种宏模板实现方法
truefalse;if==1!;return;几乎可以肯定不是好的实践但确实有用于是乎可以做一些分析:这个宏定义和使用的写法有一些优点,但也存在一些潜在问题,是否"好"取决于具体的使用场景和代码标准。
2025-07-24 22:49:07
431
MovieCrawler.exe
2020-03-24
如何提升多组qt控件之间的刷新同步率
2024-01-27
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅