基于Kafka的日志采集

目录

前言

架构图

资源列表

基础环境

关闭防护墙

关闭内核安全机制

修改主机名

添加hosts映射

一、部署elasticsearch

修改limit限制

部署elasticsearch

修改配置文件

启动

二、部署filebeat

部署filebeat

添加配置文件

启动

三、部署kibana

部署kibana

修改配置文件

启动

四、部署Kafka

安装java

安装kafka

配置环境变量

创建数据存储目录和日志存储目录

修改zk配置文件

修改Kafka配置文件

启动zk

启动Kafka

测试

五、部署logstash

部署logstash

添加配置文件

启动


前言

        当日志量变得非常大时,传统的日志收集平台可能会遇到性能瓶颈、单点故障或扩展性问题。在这种情况下,引入消息队列(如Kafka)可以显著增强日志收集系统的健壮性、可扩展性和实时性。

以下是当在日志收集平台中加入Kafka时,可以带来的优势和改进:

  1. 缓冲和异步处理
    Kafka作为一个消息队列,可以充当Filebeat(或其他日志收集器)和Logstash(或其他日志处理组件)之间的缓冲层。Filebeat可以将日志数据异步地发送到Kafka,而不需要等待Logstash的即时响应。这样,即使Logstash暂时无法处理数据,Kafka也可以暂时存储数据,直到Logstash恢复处理能力。

  2. 水平扩展
    随着日志量的增长,Kafka可以通过添加更多的节点(brokers)来实现水平扩展。这种扩展方式使得Kafka能够处理更多的并发写入和读取操作,而不会遇到单点故障或性能瓶颈。此外,Kafka的分布式架构还允许数据在多个节点之间进行复制,以提高数据的可靠性和容错性。

  3. 实时数据处理
    Kafka支持实时数据流处理,使得日志数据可以立即被消费和处理。这意味着一旦日志数据被写入Kafka,就可以立即被Logstash(或其他流处理工具)读取和处理,以满足实时分析、监控和告警的需求。

  4. 数据持久化
    Kafka将数据持久化到磁盘上,以确保即使在系统崩溃或重启的情况下,数据也不会丢失。这种持久化机制使得Kafka成为了一个可靠的数据传输和存储平台,特别适用于对日志数据进行长期存储和分析的场景。

  5. 多消费者支持
    Kafka允许多个消费者(如Logstash、其他数据分析工具或应用)从同一个主题(topic)中消费数据。这意味着您可以同时运行多个消费者来处理和分析日志数据,以满足不同的业务需求和数据使用场景。

  6. 可定制性和灵活性
    Kafka提供了丰富的API和工具,使得您可以轻松地定制和扩展日志收集系统。例如,您可以编写自定义的Kafka生产者来收集特定格式的日志数据,或者编写自定义的Kafka消费者来处理和分析日志数据。

  7. 与其他系统的集成
    Kafka是一个广泛使用的消息队列系统,它支持与其他各种系统和工具进行集成。这意味着您可以将Kafka轻松地集成到现有的日志收集、处理、存储和分析系统中,以构建一个更加健壮、可扩展和灵活的日志收集平台。

        综上所述,当日志量变得非常大时,在日志收集平台中加入Kafka可以显著提高系统的性能、可靠性和可扩展性。通过利用Kafka的缓冲、异步处理、水平扩展、实时数据处理、数据持久化、多消费者支持、可定制性和与其他系统的集成能力,您可以构建一个更加健壮、高效和灵活的日志收集系统。

        有需要本次实验软件包的评论区可以找我要,无偿提供。

架构图

资源列表

操作系统配置主机名IP
CentOS7.3.16112C4Ges01192.168.207.131
CentOS7.3.16112C4Gkibana192.168.207.165
CentOS7.3.16112C4Gfilebeat192.168.207.166
CentOS7.3.16112C4Gkafka192.168.207.167
CentOS7.3.16112C4Glogstash192.168.207.168

基础环境

关闭防护墙

systemctl stop firewalld
systemctl disable firewalld

关闭内核安全机制

sed -i "s/.*SELINUX=.*/SELINUX=disabled/g" /etc/selinux/config
reboot

修改主机名

hostnamectl set-hostname es01
hostnamectl set-hostname kibana
hostnamectl set-hostname filebeat
hostnamectl set-hostname kafka
hostnamectl set-hostname logstash

添加hosts映射

cat >> /etc/hosts << EOF
192.168.207.131 es01
192.168.207.165 kibana
192.168.207.166 filebeat
192.168.207.167 kafka
192.168.207.168 logstash
EOF

一、部署elasticsearch

修改limit限制

cat > /etc/security/limits.d/es.conf << EOF
* soft nproc 655360
* hard nproc 655360
* soft nofile 655360
* hard nofile 655360
EOF
​
cat >> /etc/sysctl.conf << EOF
vm.max_map_count=655360
EOF
sysctl -p

部署elasticsearch

mkdir -p /data/elasticsearch
tar zxvf elasticsearch-7.14.0-linux-x86_64.tar.gz -C /data/elasticsearch

修改配置文件

mkdir /data/elasticsearch/{data,logs}

[root@es01 elasticsearch-7.14.0]# grep -v "^#" /data/elasticsearch/elasticsearch-7.14.0/config/elasticsearch.yml
cluster.name: my-application
node.name: es01
path.data: /data/elasticsearch/data
path.logs: /data/elasticsearch/logs
bootstrap.memory_lock: false
network.host: 0.0.0.0
http.port: 9200
cluster.initial_master_nodes: ["es01"]

启动

useradd es 
chown -R es:es /data/
su - es
/data/elasticsearch/elasticsearch-7.14.0/bin/elasticsearch -d

二、部署filebeat

部署filebeat

mkdir -p /data/filebeat
tar zxvf filebeat-7.14.0-linux-x86_64.tar.gz -C /data/filebeat/

添加配置文件

这里提供了两份filebeat配置文件的参考

[root@filebeat filebeat-7.14.0-linux-x86_64]# cat filebeat.yml
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/messages         ###要监控的日志文件
setup.template.settings:
  index.number_of_shards: 3
output.kafka:
  #version:0.10.2             ### 根据不同 CKafka 实例开源版本配置
  hosts: ["192.168.207.167:9092"]  ###接入方式所用的IP和端口
  topic: 'topic_test1'       ###topic实例名
  partition.round_robin:
    reachable_only: false
  required_acks: 1
  compression: none
  max_message_bytes: 10000000

[root@filebeat filebeat-7.14.0-linux-x86_64]# cat filebeat.yml
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/httpd/access_log         ###要监控的日志文件
  fields:
    kafka_topic: httpd_access
- type: log
  enabled: true
  paths:
    - /var/log/httpd/error_log         ###要监控的日志文件
  fields:
    kafka_topic: httpd_error
setup.template.settings:
  index.number_of_shards: 3
output.kafka:
  #version:0.10.2             ### 根据不同 CKafka 实例开源版本配置
  hosts: ["192.168.207.167:9092"]  ###接入方式所用的IP和端口
  topic: '%{[fields.kafka_topic]}'       ###topic实例名
  partition.round_robin:
    reachable_only: false
  required_acks: 1
  compression: none
  max_message_bytes: 10000000

启动

/data/filebeat/filebeat-7.14.0-linux-x86_64/filebeat -e -c filebeat.yml

三、部署kibana

部署kibana

mkdir -p /data/kibana
tar zxvf kibana-7.14.0-linux-x86_64.tar.gz -C /data/kibana/

修改配置文件

grep -v "^#" /data/kibana/kibana-7.14.0-linux-x86_64/config/kibana.yml  | grep -v "^$"
server.port: 5601
server.host: "0.0.0.0"
elasticsearch.hosts: ["http://192.168.207.131:9200"]
kibana.index: ".kibana"

启动

useradd kibana
chown -R kibana:kibana /data 
su - kibana
/data/kibana/kibana-7.14.0-linux-x86_64/bin/kibana

四、部署Kafka

安装java

# 安装java环境
yum -y install java-1.8.0-openjdk

安装kafka

tar zxvf kafka_2.12-3.0.0.tgz
mv kafka_2.12-3.0.0 /usr/local/kafka

配置环境变量

# 配置环境变量
cat > /etc/profile.d/zookeeper.sh << 'EOF'
export ZOOKEEPER_HOME=/usr/local/kafka
export PATH=$ZOOKEEPER_HOME/bin:$PATH
EOF

cat > /etc/profile.d/kafka.sh << 'EOF'
export KAFKA_HOME=/usr/local/kafka
export PATH=$KAFKA_HOME/bin:$PATH
EOF

source /etc/profile

创建数据存储目录和日志存储目录

mkdir -p /usr/local/kafka/zookeeper
mkdir -p /usr/local/kafka/log/zookeeper
mkdir -p /usr/local/kafka/log/kafka

# 创建zk需要的myid文件
echo 0 > /usr/local/kafka/zookeeper/myid

修改zk配置文件

# 注意Kafka安装目录下的config目录里
server.properties             #是Kafka的配置文件
zookeeper.properties          #是zookeeper的配置文件
cat >> /usr/local/kafka/config/zookeeper.properties << EOF
dataLogDir=/usr/local/kafka/log/zookeeper
tickTime=2000
initLimit=10
syncLimit=5
server.0=192.168.207.167:2888:3888
EOF

sed -i "s/dataDir\=\/tmp\/zookeeper/dataDir\=\/usr\/local\/kafka\/zookeeper/g" /usr/local/kafka/config/zookeeper.properties

修改Kafka配置文件

# /usr/local/kafka/config/server.properties修改

listeners=PLAINTEXT://192.168.207.167:9092
advertised.listeners=PLAINTEXT://192.168.207.167:9092
log.dirs=/usr/local/kafka/log/kafka
delete.topic.enable=true
zookeeper.connect=192.168.207.167:2181

启动zk

/usr/local/kafka/bin/zookeeper-server-start.sh -daemon /usr/local/kafka/config/zookeeper.properties

启动Kafka

/usr/local/kafka/bin/kafka-server-start.sh -daemon /usr/local/kafka/config/server.properties

测试

# 创建一个topic
[root@kafka kafka]# bin/kafka-topics.sh --create --bootstrap-server 192.168.207.167:9092 --replication-factor 1   --partitions 1 --topic Hello-Kafka
Created topic Hello-Kafka.

# 往topic里面输入消息
[root@kafka kafka]# /usr/local/kafka/bin/kafka-console-producer.sh --broker-list 192.168.207.167:9092 --topic Hello-Kafka

# 从topic里面消费消息
[root@kafka ~]# /usr/local/kafka/bin/kafka-console-consumer.sh --bootstrap-server 192.168.207.167:9092 --topic Hello-Kafka --from-beginning

# 查看topic列表
[root@kafka kafka]# /usr/local/kafka/bin/kafka-topics.sh --bootstrap-server 192.168.207.167:9092 --list
Hello-Kafka

# 删除topic
[root@kafka kafka]# bin/kafka-topics.sh --delete --bootstrap-server 192.168.207.167:9092 --topic Hello-Kafka

五、部署logstash

部署logstash

mkdir -p /data/logstash
tar zxvf logstash-7.14.0-linux-x86_64.tar.gz -C /data/logstash/

添加配置文件

mkdir /data/logstash/logstash-7.14.0/conf.d

cat > /data/logstash/logstash-7.14.0/conf.d/system.conf << 'EOF'
input { 
  kafka{ 
    bootstrap_servers =>"192.168.207.167:9092" 
    topics =>"topic_test1" 
    type =>"topic_test1"
    codec =>"json" 
  } 
}
output { 
  if [type] == "topic_test1" {
  elasticsearch { 
    hosts => ["192.168.207.131:9200"] 
    index =>"kafka-system-%{+YYYY.MM.dd}" 
  } 
  }
}

EOF
cat > /data/logstash/logstash-7.14.0/conf.d/httpd.conf << 'EOF'
input { 
  kafka{ 
    bootstrap_servers =>"192.168.207.167:9092" 
    topics =>"httpd_access" 
    type =>"httpd_access"
    codec =>"json" 
  } 
  kafka{ 
    bootstrap_servers =>"192.168.207.167:9092" 
    topics =>"httpd_error" 
    type =>"httpd_error"
    codec =>"json" 
  }
}
output { 
  if [type] == "httpd_access" {
  elasticsearch { 
    hosts => ["192.168.207.131:9200"] 
    index =>"httpd-access-%{+YYYY.MM.dd}" 
  } 
  }
  if [type] == "httpd_error" {
  elasticsearch { 
    hosts => ["192.168.207.131:9200"] 
    index =>"httpd-error-%{+YYYY.MM.dd}" 
  } 
  }
}

EOF

启动

/data/logstash/logstash-7.14.0/bin/logstash -f /data/logstash/logstash-7.14.0/conf.d/

Flume是一个可靠、可扩展的分布式服务,用于高效地收集、聚合和移动大量的日志数据和事件。 Flume采用了基于数据流的体系结构,其主要目的是将数据从不同的数据源(例如Web服务器、数据库等)采集并将其传输到目标位置(例如Hadoop、Elasticsearch等)。在日志采集中,Flume通常被用作采集工具,它可以将日志数据收集到集中的位置,方便后续处理和分析。 Flume的体系结构由三个主要组件组成:Source、Channel和Sink。Source用于从数据源中获取数据,例如从日志文件、网络接口、系统日志等收集数据。Channel是一种缓冲机制,用于将数据从Source传输到Sink。Sink负责将数据发送到目标位置,例如将日志数据写入Hadoop HDFS或Apache Kafka等分布式消息系统中。Flume支持不同的Source和Sink,因此可以很容易地对不同类型的数据源进行采集和分发。 在使用Flume构建日志采集系统时,可以使用以下步骤: 1.选择和配置Source,例如使用TailSource从文件中收集日志数据。 2.选择和配置Channel,例如使用MemoryChannel将数据保存在内存中进行传输。 3.选择和配置Sink,例如使用HDFSSink将数据写入Hadoop HDFS中。 4.设置事件处理器,例如使用Interceptors进行数据转换和转发。 5.启动Flume Agent并监视其状态。 通过这些步骤,可以使用Flume快速构建高可用、高扩展性的日志采集系统。Flume还提供了灵活的配置选项和监视工具,可以方便地对系统进行管理和维护。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值