- 博客(36)
- 收藏
- 关注
原创 【解读】Non-line-of-sight imaging with arbitraryillumination and detection pattern
CC-SOCR 通过贝叶斯框架和虚拟共焦信号,打破了传统 NLOS 成像对密集规则测量的依赖,在任意中继场景下实现高质量重建,为复杂环境中的非视距感知提供了关键技术支撑。未来方向 引入虚拟非共焦信号增强正则化,或多平面虚拟信号利用空间相关性。结合八叉树数据结构降低计算复杂度,推动实时成像系统开发。深度思考中...在文章哪个部分已完成思考关于未来研究方向的内容位于文章的Discussion(讨论)部分。
2025-05-31 03:44:47
684
原创 【解读】Three-dimensional imaging through scatteringmedia based on confocal diffuse tomography
硬件采集:共焦扫描 + 时间门控,分离介质反射与物体散射光子;物理建模:扩散方程 + 镜像法,量化散射引起的时间展宽与空间模糊;算法反演:频域滤波 + F-K 迁移,从时间分辨数据中 “剥离” 散射影响,重建三维图像。该技术为自动驾驶(穿雾)、遥感(穿云)、医学(深层组织)等场景提供了无需先验、非侵入的解决方案,实测穿透 6 个输运平均自由程的介质(≈2.5 cm 泡沫),未来结合超导探测器(如 SNSPD)可进一步提升穿透深度与分辨率。Q2:这个公式能得到什么物理意义。
2025-05-31 03:39:27
810
原创 【解读】Non-line-of-sight imaging in the presence of scatteringmedia using Phasor Fields
文中引用了包括 Nature、Optics Letters 等期刊的 35 篇文献,涵盖瞬态成像、漫射光学断层扫描、相量场理论等领域,支撑了方法的理论基础和实验对比。:首次将相量场框架应用于散射介质中的 NLOS 成像,拓展了其适用场景。:通过模拟和真实数据验证了方法的鲁棒性,为后续研究提供实验基准。:推动 NLOS 成像在医疗、遥感等强散射环境中的实际应用。
2025-05-31 03:22:01
662
原创 Fast back-projection for non-line of sightreconstruction
像素(二维传感器单元)和光源(虚拟点光源)是输入数据的空间维度,决定了反投影中椭球的数量(\(O(\bar{P}×S×T)\),T 为时间分辨率)。体素数量是输出重建空间的离散化精度,本文通过将椭球体素化(而非逐一体素计算),将传统方法中与体素数量强相关的复杂度(\(O(\bar{X})\))优化为弱相关(\(O(\sqrt[3]{\bar{X}})\)),从而实现数千倍加速。
2025-05-31 03:20:36
562
原创 五种Intensity - based method(基于强度的方法)的阐述与区别
这些方法因原理、条件和应用的差异,各自在特定领域发挥作用,从微观成像到生物组织检测,形成了基于强度分析的多样化技术手段。
2025-05-22 12:23:33
349
原创 “TOF - based method” 和“Intensity - based method” 的区别
简言之,TOF 方法聚焦于通过时间测量获取深度,而强度方法侧重于利用信号强度表征二维外观或特定强度相关特征,两者在技术路径和适用场景上差异显著。
2025-05-22 11:49:44
134
原创 什么叫做鲁棒性
是一个跨学科概念,主要指系统、模型、算法或生物 / 社会机制在面对时,仍能保持正常功能、稳定运行或实现预期目标的能力。通俗来说,就是系统的 “抗干扰能力” 和 “容错能力”。
2025-05-09 13:03:39
481
原创 “每页主要内容”
适用于厚散射层、远间隔距离场景,结合新兴探测器可提升速度和灵敏度,推动非视距成像实际应用。:CDT 通过建模漫散射过程,实现无先验深度信息的 3D 重建,突破传统弹道成像局限。
2025-05-02 13:54:45
717
原创 Supplementary Notes的详细解释及内容概括
补充材料围绕 “共焦漫射断层成像” 技术,系统阐述了从硬件校准、成像模型建立、重建算法设计(闭合形式与迭代方法)到模拟和实验验证的完整流程。通过理论推导、数值模拟和真实实验,证明了该方法在复杂散射环境下的有效性,尤其在低信号水平和多目标分辨场景中的优势,同时分析了分辨率限制和参数鲁棒性,为非视线成像技术提供了扎实的理论和实验支持。
2025-05-02 13:22:21
689
原创 2020_Lindell_NC整篇文章的逻辑
外推距离的折射率依赖性是校准值的主要不确定性来源,因此需通过扰动折射率(在标称值 ±10% 范围内,即 1.01≤n≤1.23)量化参数不确定性。折射率扰动直接影响外推距离,进而导致参数估计的波动,通过统计方法(如引导法或蒙特卡洛模拟)确定置信区间(见补充说明 1 中的优化细节)。,利用实验数据校准漫射介质的光学参数(如散射系数 μs′ 和吸收系数 μa),并量化模型参数的不确定性。核心参数包括外推距离,其值依赖于介质的。,该值近似等于散射介质的厚度(见补充图 5),用于约束模型中的几何参数。
2025-05-02 13:21:55
422
原创 非视域成像(Non-Line-of-Sight Imaging)的系统学习路线、最新资源及视频推荐
通过以上路线,您可从基础理论逐步深入到前沿技术,并通过实验与开源工具实现从算法复现到创新研究的跨越。建议定期关注 IEEE Xplore、arXiv 等平台,跟踪最新预印本论文,保持与领域发展同步。掌握几何光学、物理光学(如光的散射、漫反射原理)及传统成像技术(如激光雷达、单光子探测)。
2025-04-28 07:29:47
568
原创 FlexiCubes代码复现运行逻辑
类包含了从体素网格中提取等值面的主要功能,例如识别表面立方体、表面边,计算对偶顶点,以及进行三角剖分等操作。该文件包含了一些预定义的查找表,这些表用于在等值面提取过程中处理不同的拓扑情况,例如。按照 Notebook 中的步骤操作,了解如何通过最小化几何差异来重建未知网格。若你想要从已知的有符号距离场(SDF)中提取网格,可以运行。按照 Notebook 中的步骤操作,即可完成等值面提取。若你想要运行示例代码,就需要下载示例数据。库的代码,并进行等值面提取和网格优化等操作。类,这是库的核心代码文件。
2025-04-27 07:27:20
428
原创 C:\Users\用户名\AppData\Local\Temp这里面文件可以删吗
建议定期清理(每月一次即可),以释放磁盘空间。操作时关闭所有程序,遇到无法删除的文件忽略即可,系统会自动处理剩余临时文件。C:\Users\用户名\AppData\Local\Temp 是 Windows 系统的。
2025-04-27 07:02:57
4477
原创 如何看PyTorch 版本、CUDA 版本
要查看 PyTorch 版本和 CUDA 版本,你可以通过 Python 脚本或者命令行工具来实现,下面为你详细介绍具体方法。
2025-04-26 01:00:46
1084
原创 Neural-Singular-Hessian 代码详解
models代码整体位于块中,这意味着该脚本作为主程序运行时才会执行这些代码。其主要步骤包括参数设置、数据文件收集以及为后续多线程处理做准备。
2025-04-24 23:14:56
820
原创 Neural-Singular-Hessian-master(复现完成,附代码)番外问题:“运行命令里的参数并没有采用修改后的值,还是使用了会让显存占用过高的参数”的处理方法
进一步降低(牺牲精度)。更换更高显存显卡。使用 CPU 模式训练(速度极慢,仅建议调试)。
2025-04-24 12:06:01
192
原创 【最终】Neural-Singular-Hessian-master复现成功(关于不断显存不足而报错的处理方法)
本人是只有一张3060显卡的笔记本电脑,只能没有办法出此下策,故没有此项问题的可以直接跳过。但此类方法是通用的错误表明。结合硬件配置(3060 移动版 / 桌面版,6GB 显存),只能进一步降低显存占用率。
2025-04-24 11:54:07
245
原创 “Neural-Singular-Hessian-master”中不在Ubuntu运行,转为Windows下的代码修改遇到的问题
等参数降低到多少合适,需要通过多次试验来找到在你的显卡上既能保证模型正常运行,又能保持一定性能的参数值。不过,我们可以根据一般经验给出一些初始的调整建议,你可以在此基础上进行微调。你可以在 train_surface_reconstruction.py 里对路径进行处理,确保路径在 Windows 系统下能被正确解析。这一般是由于 Windows 系统和 Ubuntu 系统在路径分隔符上存在差异,以及相对路径在不同系统下的解析方式有所不同造成的。来构建路径,并且保证路径的根目录存在。
2025-04-24 10:58:42
705
原创 “Neural-Singular-Hessian-master”中部分Python 文件结构讲解
【代码】“Neural-Singular-Hessian-master”中部分Python 文件的目的。
2025-04-24 09:54:39
169
原创 Neural-Singular-Hessian-master代码复现运行逻辑
如果你想对单个形状进行重建,可以按照以下步骤操作:如果你想进行形状空间学习,可以按照以下步骤操作:按照以上步骤,你就可以运行 项目并进行形状重建和形状空间学习了。后续操作需严格关注软件版本兼容性(如 PyTorch、、CUDA、驱动),确保依赖库完整安装,并正确配置系统环境与项目运行环境。
2025-04-24 09:13:08
737
原创 安装 torch_scatter 时遇到了构建错误
错误出现在阶段,说明 Python 在编译 C 扩展时找不到所需的或相关工具链。Windows 下编译 Python C 扩展需要,而依赖 C++ 实现,必须通过编译器构建。
2025-04-24 08:19:25
621
原创 我的cmd的nvcc -V是12.4 但在pycharm中显示的cuda(用的anaconda)显示cuda是11.5
这种差异是正常的,本质是。
2025-04-24 07:45:45
359
原创 卸载旧版 CUDA
在控制面板界面中,查看方式选择 “类别”(如果不是该查看方式,可进行切换),然后点击 “程序” 下方的 “卸载程序” 选项,即可进入 “程序和功能” 界面。在这个界面中,会列出系统中已安装的所有程序。在 “程序和功能” 界面的程序列表中,找到与 CUDA 相关的程序。通常,与 CUDA 相关的程序名称中会包含 “CUDA” 字样,比如 “NVIDIA CUDA Toolkit” 等。所以,为确保干净卸载,避免安装新 CUDA 时出现问题,这些都要删除。
2025-04-24 05:42:29
1048
原创 【常用库】
在图神经网络(GNN)的计算中,常常需要对节点特征或边特征进行聚合操作,比如计算某个节点邻域的特征均值、最大值或求和等。用于将训练过程中的指标(如损失、准确率)、模型结构、图像等数据写入日志文件,方便通过 TensorBoard 可视化。(计算散射后的最大值)等函数,通过这些函数可以高效地完成上述聚合操作,极大地提升了图数据处理的效率,是实现和优化图神经网络模型的关键工具之一。若代码中需要可视化训练进度,此模块为必需依赖。用于高效处理空间点云数据(如近邻搜索),是三维重建类项目的常用依赖。
2025-04-24 04:56:47
176
原创 在pycharm中的终端显示的是cuda版本是12.4,而在系统电脑的小黑框即cmd的那个里面发现cuda版本是11.5
这种情况是因为 PyCharm 中的终端和系统命令提示符(CMD)使用的环境变量不同,导致它们找到的nvcc命令对应的 CUDA 版本不一致。
2025-04-23 11:22:51
339
原创 注意 conda 和 pip 的安装方式区分
conda的默认渠道(包括清华镜像源)中没有trimesh包,因此无法通过安装。此时建议直接使用pip安装(trimesh已在 PyPI 上发布,且你的环境已配置清华镜像源,下载速度有保障)。
2025-04-23 09:56:56
303
原创 遇到 pip 安装scipy 速度慢的问题
参数指定了清华大学的 PyPI 镜像源,通常能大幅提升下载速度。如果后续还需要安装其他包,也可以用类似格式(替换包名)。操作都会默认使用清华镜像源,加快下载速度。
2025-04-23 09:35:17
285
原创 总结文章2:Neural-Singular-Hessian: Implicit Neural Representation
标题、作者与摘要重点:提出了一种名为 的新方法,通过强制隐式神经函数的Hessian矩阵在靠近表面的点处奇异(行列式为零)解决无定向点云表面重建问题。贡献利用SDF的微分几何特性,对齐近表面点与其投影点的梯度方向。通过退火策略逐步优化,实现从粗到细的高保真重建。实验证明方法在抑制伪影(如鬼影几何)和恢复细节上优于现有方法(如DiGS、PCP)。本文通过引入Hessian奇异性约束,解决了无定向点云重建中的梯度对齐与伪影问题,结合退火策略。
2025-04-13 03:38:10
965
原创 总结文章1:Flexible Isosurface Extraction for Gradient-Based Mesh Optimization
本文提出了一种名为FlexiCubes的新型等值面提取方法,专为基于梯度的网格优化设计,旨在解决传统方法(如Marching Cubes和Dual Contouring)在优化过程中存在的自由度不足或数值不稳定问题。
2025-04-13 02:49:03
922
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人