这种情况是因为 PyCharm 中的终端和系统命令提示符(CMD)使用的环境变量不同,导致它们找到的nvcc
命令对应的 CUDA 版本不一致。以下是可能的原因和解决方法:
原因分析
- 环境变量设置差异:PyCharm 可能有自己独立的环境变量设置,或者它没有正确读取系统环境变量。这可能导致在 PyCharm 终端中使用的
nvcc
命令来自 CUDA 12.4 的安装路径,而系统 CMD 中使用的nvcc
命令来自 CUDA 11.5 的安装路径。
解决方法
- 在 PyCharm 中配置正确的 CUDA 路径
- 打开 PyCharm,进入项目设置(Settings)。
- 在左侧菜单中找到 “Project: [项目名称]” -> “Python Interpreter”。
- 点击右上角的齿轮图标,选择 “Show All”。
- 找到当前使用的 Python 解释器,点击右侧的 “Show paths for the selected interpreter” 按钮。
- 在弹出的窗口中,检查是否有与 CUDA 相关的路径被错误地设置为 CUDA 12.4 的路径,如果有,将其修改为 CUDA 11.5 的路径。例如,如果存在
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4
这样的路径,将其改为C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.5
。
- 检查 PyCharm 的环境变量设置
- 在 PyCharm 的设置中,找到 “Appearance & Behavior” -> “System Settings” -> “Environment Variables”。
- 检查这里的环境变量设置,确保 CUDA 相关的环境变量(如
CUDA_HOME
、PATH
中与 CUDA 相关的路径)指向 CUDA 11.5 的安装目录。如果有指向 CUDA 12.4 的路径,将其修改为 CUDA 11.5 的路径。
完成上述设置后,在 PyCharm 的终端中重新输入nvcc --version
,应该会显示 CUDA 11.5 的版本信息。