Distance Gym - 102028I 2018-2019 ACM-ICPC, Asia Jiaozuo Regional Contest

本文探讨了在水平线上有标记的n个点的情况下,如何选择k个不同的点以最大化所有选定点对之间的距离之和。通过分析输入输出格式、示例及贪心算法实现,为解决此类问题提供了一种有效的方法。

There are nn points on a horizontal line, labelled with 11 through nn from left to right.

The distance between the ii-th point and the (i+1)(i+1)-th point is aiai.

For each integer kk ranged from 11 to nn, you are asked to select exactly kk different given points on the line to maximize the sum of distances between all pairs of selected points.

Input

The input contains several test cases, and the first line contains a positive integer TT indicating the number of test cases which is up to 10001000.

For each test case, the first line contains an integer nn indicating the number of points, where 2≤n≤1052≤n≤105.

The second line contains (n−1)(n−1) positive integers a1,a2,⋯,an−1a1,a2,⋯,an−1, where 1≤ai≤1041≤ai≤104.

We guarantee that the sum of nn in all test cases is up to 106106.

Output

For each test case, output a line containing nn integers, the ii-th of which is the maximum sum of distances in case k=ik=i. You should output exactly one whitespace between every two adjacent numbers and avoid any trailing whitespace in this line.

Example

Input

1
5
2 3 1 4

Output

0 10 20 34 48

Note

The figure below describes the sample test case.

The only best selection for k=2k=2 should choose the leftmost and the rightmost points, while a possible best selection for k=3k=3 could contain any extra point in the middle.

贪心

#include<bits/stdc++.h>
#define ll long long 
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
int t;
ll sum[maxn];
using namespace std;
inline char nc() {
	static char buf [100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read() {
	static char c=nc(); int x=0,f=1;
	for(;c>'9'||c<'0';c=nc()) if(c=='-') f=-1;
	for(;c<='9'&&c>='0';c=nc()) x=(x<<3)+(x<<1)+c-48;
	return x*f;
}

int main(){
	t = read();
	while(t--){
		int n;
		n = read();
		memset(sum, 0, sizeof(sum));
		sum[1] = 1;
		for(int i = 2; i <= n; i++){
			ll a;
			a = read();
			sum[i] += sum[i - 1] + a;
			//cout << sum[i] << " ";
		}
		//cout << endl;
		ll ans = 0;
		cout << 0 << " ";
		ll cnt = 0;
		for(int i = 2; i <= n; i++){
			if(i % 2){
				ans += cnt;
			}
			else{
				ll u = i / 2;
				ans += cnt + sum[n - u + 1] - sum[u];
				cnt += sum[n - u + 1] - sum[u];
			}
			if(i == n)
				cout << ans << endl;
			else
				cout << ans << " ";
		}
	}
} 

 

消息 CSDN首页 发布文章 【数据驱动】【航空航天结构的高效损伤检测技术】一种数据驱动的结构健康监测(SHM)方法,用于进行原位评估结构健康状态,即损伤位置和程度,在其中利用了选定位置的引导式兰姆波响应(Matlab代码实现) 99 100 摘要:会在推荐、列表等场景外露,帮助读者快速了解内容,支持一键将正文前 256 字符键入摘要文本框 0 256 AI提取摘要 您已同意GitCode 用户协议 和 隐私政策,我们会为您自动创建账号并备份文章至我的项目。 活动 话题 共 0 字 意见反馈内容概要:本文研究了在湍流天气条件下,无人机发生发动机故障时的自动着陆问题,提出了一种多级适配控制策略,并通过Matlab进行仿真代码实现。该策略旨在提升无人机在极端环境下的安全着陆能力,重点解决了气流干扰与动力失效双重挑战下的姿态稳定与轨迹规划问题。研究涵盖了故障检测、控制系统重构、自适应调整及安全着陆路径生成等关键技术环节,验证了所提方法在复杂气象条件下的有效性与鲁棒性。; 适合人群:具备一定无人机控制、自动控制理论基础及Matlab编程能力的科研人员、研究生以及从事航空航天、智能控制领域的工程技术人员。; 使用场景及目标:①用于无人机故障应急控制系统的设计与仿真;②支持复杂环境下无人机动态响应分析与控制算法开发;③为飞行器自主安全着陆技术提供解决方案参考。; 阅读建议:建议结合Matlab代码与控制理论深入理解多级适配机制,重点关注故障识别与控制切换逻辑,可通过修改仿真参数测试不同湍流强度下的系统表现,以加深对算法鲁棒性的认识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值