理解什么是叶子张量和非叶子张量?

在 PyTorch 中,叶子张量(Leaf Tensor)和非叶子张量(Non-Leaf Tensor)是计算图中的两个重要概念:

叶子张量(Leaf Tensor)

叶子张量是计算图中的起始点,它们通常是用户直接创建的张量,并且没有其他张量作为它们的输入。换句话说,叶子张量是那些不需要通过任何计算就能获得的张量。在神经网络中,叶子张量通常对应于模型的输入数据和模型的参数(权重和偏置)。

特征包括:

  • 是计算图的起点。
  • 通常对应于模型的参数或外部输入数据。
  • 可以设置 requires_grad=True 来追踪梯度,以便在训练过程中更新这些参数。

非叶子张量(Non-Leaf Tensor)

非叶子张量是计算图中通过某些操作从其他张量派生出来的张量。它们是计算图的中间节点,其值依赖于一个或多个其他张量的值。当你对叶子张量或其他非叶子张量执行操作(如加法、乘法等)时,就会创建非叶子张量。

特征包括:

  • 是通过计算图中的操作生成的。
  • 依赖于其他张量的值。
  • 默认情况下,它们的 .grad 属性在反向传播时不会被填充,除非你显式调用 retain_grad() 方法。

示例

import torch

# 创建叶子张量 x,它是一个直接由用户创建的张量
x = torch.randn(2, 2, requires_grad=True)

# 创建非叶子张量 y,它是通过操作 x 得到的
y = x * 2

# 创建另一个非叶子张量 z,它是通过操作 y 得到的
z = y + 3

在这个示例中:

  • x 是叶子张量,因为它是直接创建的,并且没有依赖于其他张量。
  • yz 是非叶子张量,因为它们是通过操作 xy 得到的。

梯度计算

在反向传播时,PyTorch 会自动计算叶子张量的梯度,并将这些梯度存储在叶子张量的 .grad 属性中。对于非叶子张量,你需要显式调用 retain_grad() 方法,才能在反向传播时计算和存储它们的梯度。

# 反向传播计算梯度
z.backward()

# 打印 x, y, z 的梯度
print("Gradient of x:", x.grad)  # 可以访问,因为 x 是叶子张量
print("Gradient of y:", y.grad)  # 会报警告,因为 y 是非叶子张量,且没有调用 retain_grad()
print("Gradient of z:", z.grad)  # 会报警告,因为 z 是非叶子张量,且没有调用 retain_grad()

为了能够访问 yz 的梯度,你需要在创建它们之后调用 retain_grad() 方法:

y.retain_grad()
z.retain_grad()

# 反向传播计算梯度
z.backward()

# 打印 x, y, z 的梯度
print("Gradient of x:", x.grad)  # 可以访问
print("Gradient of y:", y.grad)  # 现在可以访问
print("Gradient of z:", z.grad)  # 现在可以访问

贴个网图,
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值