1.数域,不定元,首项系数、次数证明
2.带余除法,综合除法,多项式展开,整除,整除4性质
3.最大公因式,互素,互素充要条件及3推论
4.不可约多项式、充要条件、2推论、一次多项式、任意数域因式分解存在性及唯一性,标准分解式
5.重因式,N阶微商,N阶微商与重因式关系,重因式存在判别、去重方法
6.多项式函数,余数定理,根一次因式,任意数域N次多项式根数量,多项式函数、多项式等价原理,拉格朗日插值公示与范德蒙行列式,重根、公共根求法与判别
7.代数基本定理,复数域、实数域因式分解,实数域复根成对存在
8.本原多项式唯一性,整系数有理数域可约等价整系数可约,整系数多项式有理根必要条件,eisenstein判别法(y+1)
下一步 线性空间与线性变换