BigDecimal 开n次方根

public class BigRoot {

    public static void main(String[] args) {
        BigDecimal num = new BigDecimal("6.47");
        long time;
        time = System.nanoTime();

        int n = 365;
        int scale = 8;
        BigDecimal root = bigRoot(num, n, scale, BigDecimal.ROUND_HALF_UP);
        time = System.nanoTime() - time;
        System.out.println("根:" + root);
        System.out.println("反算:" + root.pow(n));
        System.out.println("原值:" + num);
        System.out.println("耗时/ms:" + time / 1000000);
    }


    /**
     * BigDecimal开n次方根。
     * 转载于:https://www.xuebuyuan.com/1863340.html
     * @param number 被开方数
     * @param n n次方根
     * @param scale 精度
     * @param roundingMode 舍入规则
     * @return 结果
     */
    public static BigDecimal bigRoot(BigDecimal number, int n, int scale, int roundingMode) {
        boolean negate = false;
        if (n < 0)
            throw new ArithmeticException();
        if (number.compareTo(BigDecimal.ZERO) < 0) {
            if (n % 2 == 0)
                throw new ArithmeticException();
            else {
                number = number.negate();
                negate = true;
            }
        }

        BigDecimal root;

        if (n == 0)
            root = BigDecimal.ONE;
        else if (n == 1)
            root = number;
        else {
            final BigInteger N = BigInteger.valueOf(n);
            final BigInteger N2 = BigInteger.TEN.pow(n);
            final BigInteger N3 = BigInteger.TEN.pow(n - 1);
            final BigInteger NINE = BigInteger.valueOf(9);

            BigInteger[] C = new BigInteger[n + 1];
            for (int i = 0; i <= n; i++) {
                C[i] = combination(n, i);
            }

            BigInteger integer = number.toBigInteger();
            String strInt = integer.toString();
            int lenInt = strInt.length();
            for (int i = lenInt % n; i < n && i > 0; i++)
                strInt = "0" + strInt;
            lenInt = (lenInt + n - 1) / n * n;
            BigDecimal fraction = number.subtract(number.setScale(0, BigDecimal.ROUND_DOWN));
            int lenFrac = (fraction.scale() + n - 1) / n * n;
            fraction = fraction.movePointRight(lenFrac);
            String strFrac = fraction.toPlainString();
            for (int i = strFrac.length(); i < lenFrac; i++)
                strFrac = "0" + strFrac;

            BigInteger res = BigInteger.ZERO;
            BigInteger rem = BigInteger.ZERO;
            for (int i = 0; i < lenInt / n; i++) {
                rem = rem.multiply(N2);

                BigInteger temp = new BigInteger(strInt.substring(i * n, i * n + n));
                rem = rem.add(temp);

                BigInteger j;
                if (res.compareTo(BigInteger.ZERO) != 0)
                    j = rem.divide(res.pow(n - 1).multiply(N).multiply(N3));
                else
                    j = NINE;
                BigInteger test = BigInteger.ZERO;
                temp = res.multiply(BigInteger.TEN);
                while (j.compareTo(BigInteger.ZERO) >= 0) {
                    //test = res.multiply(BigInteger.TEN);
                    //test = ((test.add(j)).pow(n)).subtract(test.pow(n));
                    test = BigInteger.ZERO;
                    if (j.compareTo(BigInteger.ZERO) > 0)
                        for (int k = 1; k <= n; k++)
                            test = test.add(j.pow(k).multiply(C[k]).multiply(temp.pow(n - k)));
                    if (test.compareTo(rem) <= 0)
                        break;
                    j = j.subtract(BigInteger.ONE);
                }

                rem = rem.subtract(test);
                res = res.multiply(BigInteger.TEN);
                res = res.add(j);
            }
            for (int i = 0; i <= scale; i++) {
                rem = rem.multiply(N2);

                if (i < lenFrac / n) {
                    BigInteger temp = new BigInteger(strFrac.substring(i * n, i * n + n));
                    rem = rem.add(temp);
                }

                BigInteger j;
                if (res.compareTo(BigInteger.ZERO) != 0) {
                    j = rem.divide(res.pow(n - 1).multiply(N).multiply(N3));
                } else
                    j = NINE;
                BigInteger test = BigInteger.ZERO;
                BigInteger temp = res.multiply(BigInteger.TEN);
                while (j.compareTo(BigInteger.ZERO) >= 0) {
                    //test = res.multiply(BigInteger.TEN);
                    //test = ((test.add(j)).pow(n)).subtract(test.pow(n));
                    test = BigInteger.ZERO;
                    if (j.compareTo(BigInteger.ZERO) > 0)
                        for (int k = 1; k <= n; k++)
                            test = test.add(j.pow(k).multiply(C[k]).multiply(temp.pow(n - k)));
                    if (test.compareTo(rem) <= 0)
                        break;
                    j = j.subtract(BigInteger.ONE);
                }

                rem = rem.subtract(test);
                res = res.multiply(BigInteger.TEN);
                res = res.add(j);
            }
            root = new BigDecimal(res).movePointLeft(scale + 1);
            if (negate)
                root = root.negate();
        }
        return root.setScale(scale, roundingMode);
    }

    public static BigInteger combination(int n, int k) {
        if (k > n || n < 0 || k < 0)
            return BigInteger.ZERO;
        if (k > n / 2)
            return combination(n, n - k);
        BigInteger N1 = BigInteger.ONE;
        BigInteger N2 = BigInteger.ONE;
        BigInteger N = BigInteger.valueOf(n);
        BigInteger K = BigInteger.valueOf(k);
        for (int i = 0; i < k; i++) {
            N1 = N1.multiply(N);
            N2 = N2.multiply(K);
            N = N.subtract(BigInteger.ONE);
            K = K.subtract(BigInteger.ONE);
        }
        return N1.divide(N2);
    }

}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值