进制介绍/转换

本文详细介绍了二进制、八进制、十进制和十六进制在计算机中的应用,包括它们的基数、符号以及在数据存储、处理和转换中的角色。还提供了进制转换的具体计算方法和实例,展示了Windows计算器的进制切换功能。
摘要由CSDN通过智能技术生成

一 进制介绍

  1. 二进制(Binary):
  • 基数:2
  • 使用的符号:0、1
  • 在计算机中的使用场景:计算机内部以二进制形式存储和处理数据。所有的数字、文本、图像等最终都会被转换成二进制的形式进行处理。CPU的指令也是以二进制形式表示的。
  • 举例:十进制数42在二进制中表示为101010。
  1. 八进制(Octal):
  • 基数:8
  • 使用的符号:0、1、2、3、4、5、6、7
  • 在计算机中的使用场景:在计算机编程中,八进制常用于表示一些特定的权限或者掩码。在现代计算机中,使用较少,而更常见的是使用十六进制。
  • 举例:十进制数56在八进制中表示为70。
  1. 十进制(Decimal):
  • 基数:10
  • 使用的符号:0、1、2、3、4、5、6、7、8、9
  • 在计算机中的使用场景:十进制是我们日常生活中最常用的数字系统,但在计算机内部并不直接使用。计算机最终会将输入的十进制数转换为二进制进行处理。
  • 举例:十进制数123表示为123。
  1. 十六进制(Hexadecimal):
  • 基数:16
  • 使用的符号:0、1、2、3、4、5、6、7、8、9、A(或a)、B(或b)、C(或c)、D(或d)、E(或e)、F(或f)
  • 在计算机中的使用场景:十六进制在计算机领域中非常常见,因为它能够简洁地表示大量的二进制数据,比如内存地址、颜色值等。
  • 举例:十进制数255在十六进制中表示为FF。
进制图示:
十进制二进制八进制十六进制
0000
1111
21022
31133
410044
510156
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F
16100002010
17100012111

二 进制转换

当进行进制转换时,需要按照每位数字的权重进行计算。对于不同的进制,权重的计算方式也会有所不同。

2.1 其它进制转十进制
  1. 二进制转十进制:
  • 计算方法:从右往左,每一位数字乘以对应的权重(2的幂),然后将所有结果相加。
  • 举例:将二进制数1011转换为十进制。
1×2^3 + 0×2^2 + 1×2^1 + 1×2^0 = 8+0+2+1 =11
因此,二进制数1011转换为十进制为11
  1. 八进制转十进制:
  • 计算方法:从右往左,每一位数字乘以对应的权重(8的幂),然后将所有结果相加。
  • 举例:将八进制数47转换为十进制。
4×8^1 + 7×8^0 =32+7=39

因此,八进制数47转换为十进制为39
  1. 十六进制转十进制:
  • 计算方法:从右往左,每一位数字乘以对应的权重(16的幂),然后将所有结果相加。
  • 举例:将十六进制数1A7转换为十进制。
1×16^2 +A×16^1 +7×16^0 = 256+10×16+7 =256+160+7 = 423

因此,十六进制数1A7转换为十进制为423
2.2 十进制转其它进制
  1. 十进制转二进制:
  • 计算方法:不断用2整除十进制数,并记录每次的余数(0或1),然后将这些余数倒序排列得到二进制数。
  • 举例:将十进制数27转换为二进制。
27÷2=13(余113÷2=6(余16÷2=3(余03÷2=1(余11÷2=0(余1)

将这些余数倒序排列,得到二进制数:11011。
因此,十进制数27转换为二进制为11011
  1. 十进制转八进制:
  • 计算方法:不断用8整除十进制数,并记录每次的余数(0到7),然后将这些余数倒序排列得到八进制数。
  • 举例:将十进制数125转换为八进制。
125÷8=15(余515÷8=1(余71÷8=0(余1)

将这些余数倒序排列,得到八进制数:175。
因此,十进制数125转换为八进制为175
  1. 十进制转十六进制:
  • 计算方法:不断用16整除十进制数,并记录每次的余数(0到F),然后将这些余数倒序排列得到十六进制数。
  • 举例:将十进制数301转换为十六进制。
301÷16=18(余13) (13对应十六进制的D18÷16=1(余21÷16=0(余1)


将这些余数倒序排列,得到十六进制数:12D。
因此,十进制数301转换为十六进制为12D
2.3 二进制转其它进制
  1. 二进制转八进制:
  • 举例:将二进制数1101101转换为八进制。
  • 计算方法:首先将二进制数每三位一组进行分组,不足三位的在左侧补0,然后将每组转换为对应的八进制数。
1101101
001(1)101(5)101(5)

因此,二进制数1101101转换为八进制为155
  1. 二进制转十六进制:
  • 计算方法:首先将二进制数每四位一组进行分组,不足四位的在左侧补0,然后将每组转换为对应的十六进制数。
  • 举例:将二进制数1011011101转换为十六进制。
1011011101
0010(2)1101(D)1101(D)

因此,二进制数1011011101转换为十六进制为2DD。
2.4 其它进制转二进制
  1. 八进制转二进制:
  • 计算方法:将八进制数的每一位转换为对应的三位二进制数,然后将所有结果拼接起来。
  • 举例:将八进制数073转换为二进制。
八进制数73的每一位对应的三位二进制数分别为:
7(111)3(011)
将这些二进制数拼接起来,得到二进制数:111011。
因此,八进制数73转换为二进制为111011
  1. 十六进制转二进制:
  • 计算方法:将十六进制数的每一位转换为对应的四位二进制数,然后将所有结果拼接起来。
  • 举例:将十六进制数DEA转换为二进制。
十六进制数DEA的每一位对应的四位二进制数分别为:
	D(1101)E(1110)A(1010)。
将这些二进制数拼接起来,得到二进制数:110111101010。
因此,十六进制数DEA转换为二进制为110111101010

最后说明下 windows 系统自带的计算器功能
打开程序员界面之后,就可以看到对应的进制了
直接选择对应的进制输入就可以自动算出来其它进制的值
计算器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值