在平面内有两个点找出最近的两个点。
分析:
如果我们将平面一份为二,那么这个答案可能来自三种情况。
1.这两个点在左半平面。
2.这两个点在右半平面。
3.这两个点横跨左右平面分割线。
那么我们需要先把第一二种情况下得到的答案求出(假设为d),而这个问题就是原来问题的一个子问题,可以使用递归求解。然后再处理离分割线左侧d和离右侧d的所有点,将这些点按y坐标排序,从第一个开始遍历(两层循环),每次判断两点的纵距离是否大于d,是则break;
另外,平面一份为二,尽量均匀分布,所以可以先以x坐标排序,然后注意递归终点。
代码:
#include <bits/stdc++.h>
using namespace std;
int n;
struct node
{
int x, y;
}ar[100050];
int br[100050];
//用于求两点间距离
double dis(struct node a, struct node b)
{
double x = (double)(a.x - b.x) * (a.x - b.x);
double y = (double)(a.y - b.y) * (a.y - b.y);
return (double)sqrt(x + y);
}
bool cmp1(struct node a, struct node b)
{
return a.x < b.x;
}
bool cmp2(int a, int b)
{
return ar[a].y < ar[b].y;
}
double near_dis(int l, int r)
{
//两个递归终点,只剩两个点或三个点时,两两求距离然后取min
if(r == l + 1) return dis(ar[l], ar[r]);
if(l + 2 == r) return min(dis(ar[l], ar[r]), min(dis(ar[l], ar[l + 1]), dis(ar[l + 1], ar[r])));
//分割,求出情况1, 2的结果
int mid = (l + r) >> 1;
double ans = min(near_dis(l, mid), near_dis(mid + 1, r));
//找出符合条件的点,并将其按y坐标排序
int cnt = 0;
for(int i = l; i <= r; ++i)
{
if(ar[i].x >= ar[mid].x - ans && ar[i].x <= ar[mid].x + ans)
br[++cnt] = i;
}
sort(br + 1, br + cnt + 1, cmp2);
//求出情况2的答案,不断取min更新
for(int i = 1; i <= cnt; ++i)
{
for(int j = i + 1; j <= cnt; ++j)
{
if(ar[br[j]].y - ar[br[i]].y >= ans) break;
ans = min(ans, dis(ar[br[i]], ar[br[j]]));
}
}
return ans;
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i) scanf("%d%d", &ar[i].x, &ar[i].y);
sort(ar + 1, ar + n + 1, cmp1);//按x排序
cout << near_dis(1, n) << '\n';
return 0;
}