分治法求解平面n点中距离最近的两点

最近点对问题定义:已知上m个点的集合,找出对接近的一对点。
     在二维空间里,可用分治法求解最近点对问题。预处理:分别根据点的x轴和y轴坐标进行排序,得到X和Y,很显然此时X和Y中的点就是S中的点。
情况(1):点数小于等于三时:

                                

情况(2):点数大于三时:
     首先划分集合S为SL和SR,使得SL中的每一个点位于SR中每一个点的左边,并且SL和SR中点数相同。分别在SL和SR中解决最近点对问题,得到DL和DR,分别表示SL和SR中的最近点对的距离。令d=min(DL,DR)。如果S中的最近点对(P1,P2)。P1、P2两点一个在SL和一个在SR中,那么P1和P2一定在以L为中心的间隙内,以L-d和L+d为界,如下图所示:

                       

     如果在SL中的点P和在SR中的点Q成为最近点对,那么P和Q的距离必定小于d。因此对间隙中的每一个点,在合并步骤中,只需要检验yp+d和yp-d内的点即可。
步骤1:根据点的y值和x值对S中的点排序。
步骤2:找出中线L将S划分为SL和SR
步骤3:将步骤2递归的应用解决SL和SR的最近点对问题,并令d=min(dL,dR)。
步骤4:将L-d~L+d内的点以y值排序,对于每一个点(x1,y1)找出y值在y1-d~y1+d内的所有点,计算距离为d'。                 如果d'小于d,令d=d',最后的d值就是答案。

实验1  递归与分治算法

一,实验目的和要求

(1)进一步掌握递归算法的设计思想以及递归程序的调试技术;

(2)理解这样一个观点:分治与递归经常同时应用在算法设计之中。

(3)分别用蛮力法和分治法求解最近对问题;

(4)分析算法的时间性能,设计实验程序验证分析结论。

二,实验内容

设p1=(x1, y1), p2=(x2, y2), …, pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对。

三,实验环境

 Turbo C 或VC++

四,实验学时

    2学时,必做实验

五,数据结构与算法

#include<iostream.h>

#include<cmath>

#define TRUE 1

#define FALSE 0

 

typedef struct Node

{

   double x;

   double y;

}Node;       //坐标

 

typedef struct List

{

    Node* data;      //点

    int count;      //点的个数

}List;

 

typedef struct CloseNode  

{

    Node a;

    Node b;     //计算距离的两个点

    double space;     //距离平方

}CloseNode;

 

int n;     //点的数目

 

//输入各点到List中

void create(List &L)

{

   cout<<"请输入平面上点的数目:\n";

   cin>>n;

   L.count=n;

   L.data = new Node[L.count];      //动态空间分配

   cout<<"输入各点坐标 :x_y):"<<endl;

   for(int i=0;i<L.count;++i)

      cin>>L.data[i].x>>L.data[i].y;

}

 

//求距离的平方

double square(Node a,Node b)

{

    return ((a.x-b.x)*(a.x-b.x))+((a.y-b.y)*(a.y-b.y));

}

 

//蛮力法

void BruteForce(const List &L,CloseNode &cnode,int begin,int end)

{

   for(int i=begin;i<=end;++i)

   {

      for(int j=i+1;j<=end;++j)

      {

        double space=square(L.data[i],L.data[j]);

        if(space<cnode.space)

        {

           cnode.a=L.data[i];

           cnode.b=L.data[j];

           cnode.space=space;

        }

      }

   }

}

 

//冒泡排序

void BubbleSort(Node r[],int length)

{

    int change,n;

    n=length;change=TRUE;

    double b,c;

    for(int i=0;i<n-1&&change;++i)

    {

        change=FALSE;

        for(int j=0;j<n-i-1;++j)

        {

            if(r[j].x>r[j+1].x)

            {

                b=r[j].x;c=r[j].y;

                r[j].x=r[j+1].x;r[j].y=r[j+1].y;

                r[j+1].x=b;r[j+1].y=c;

                change=TRUE;

            }

        }

    }

}

 

//分治法中先将坐标按X轴从小到大的顺序排列

void paixu(List L)    

{

   BubbleSort(L.data,L.count);   //调用冒泡排序

}

 

//左右各距中线d的区域的最近对算法

void middle(const List & L,CloseNode &cnode,int mid,double midX)

{

   int i,j;    //分别表示中线左边,右边的点

   double d=sqrt(cnode.space);

   i=mid;

   while(i>=0&&L.data[i].x>=(midX-d))    //在左边的d区域内

   {

     j=mid;

     while(L.data[++j].x<=(midX+d)&&j<=L.count)    //在右边的d区域内

     {   

        if(L.data[j].y<(L.data[i].y-d)||L.data[j].y>(L.data[i].y+d))   //判断纵坐标是否在左边某固定点的2d区域内

        continue;

        double space = square(L.data[i],L.data[j]);

        if(cnode.space>space)    //在满足条件的区域内依次判断

        {

          cnode.a=L.data[i];

          cnode.b=L.data[j];

          cnode.space=space;

        }

     }

   --i;

   }

}

 

//分治法求最近对

void DivideConquer(const List &L,CloseNode &closenode,int begin,int end)

{

    if(begin!=end)

    {

       int mid = (begin+end)/2;     //排列后的中间的那个点

       double midX = L.data[mid].x;

       DivideConquer(L,closenode,begin,mid);      //继续在左半边用分治法求最近对

       DivideConquer(L,closenode,mid+1,end);      //继续在右半边用分治法求最近对

       middle(L,closenode,mid,midX);               //判断左右各距中线d的区域,是否有最近对

    }

}

 

void main()

{

   //初始化

   List list;

   CloseNode closenode;
   closenode.square=10000;//必须付初值,根据实际情况而定

   closenode.space = 10000;    //最近点的距离

 

   create(list);     //输入各点到NList中

   cout<<"各点坐标为:"<<endl;

   for(int i=0;i<list.count;++i)

       cout<<"X="<<list.data[i].x<<"   Y="<<list.data[i].y<<"\n";

   BruteForce(list,closenode,0,list.count-1);

   cout<<"用蛮力法求最近对:"<<endl;

   cout<<"最近对为点 ("<<closenode.a.x<<","<<closenode.a.y<<")和点("<<closenode.b.x<<","<<closenode.b.y<<")\n"<<"最近距离为: "<<sqrt(closenode.space)<<endl;

   cout<<endl<<endl;

 

   cout<<"用分治法求最近对:"<<endl;

   paixu(list);

   cout<<"经过排序后的各点:"<<endl;

   for(int j=0;j<list.count;++j)

       cout<<"X="<<list.data[j].x<<"   Y="<<list.data[j].y<<"\n";

   DivideConquer(list,closenode,0,list.count-1);

   cout<<"最近对为点 ("<<closenode.a.x<<","<<closenode.a.y<<")和点("<<closenode.b.x<<","<<closenode.b.y<<")\n"<<"最近距离为: "<<sqrt(closenode.space)<<endl;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值