题意:
输入n,k,p代表有一个n个数的数组,要求你把这个n个数重新分配到k个数组里,其中p个数组中所有元素和为偶数。可以分配成功就输出“YES”,并且输出k行,表示分配后的k个数组中,每个数组的元素个数,以及每个数组中的所有元素。
分析:
一个模拟题,很容易想到把奇数和偶数分开,然后注意奇数与偶数之间的相加后的奇偶性。然后,模拟分配过程。
规定这k-p个奇数数组中每个只有一个奇数,所以先分配这k-p个数组。之后仅利用偶数分配好p个偶数组,之后把剩下的奇数每两个分配到一个偶数数组中。
这样做好处在于不需要分好多种情况讨论,只需在分配过程中看是否无法分配,据此判断yes or no,也不需要刻意构造一个放剩余元素的数组
注意:p等于0的时候需要特判,因为要分配,所以需要循环这p个偶数数组,用到%p的操作(下标从零开始)
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = (int)1e5 + 5;
int n, k, p;
int ar[maxn];
int a[maxn], b[maxn];
int cnt1, cnt2;
vector<int> vt[maxn];
bool judge()
{
if(p == 0)
{
for(int i = 0; i < cnt2; ++i) vt[0].push_back(b[i]);
int mv = 0;
for(int i = 0; i < k; ++i)
{
if(mv == cnt1) return false;
vt[i].push_back(a[mv++]);
}
if((cnt1 - k) & 1) return false;
else
{
for(int i = k; i < cnt1; ++i) vt[0].push_back(a[i]);
}
}
else
{
int mv1 = 0;
int mv2 = 0;
for(int i = k - 1; i > p - 1; --i)
{
if(mv1 == cnt1) return false;
vt[i].push_back(a[mv1++]);
}
int t = p;
while(mv2 < cnt2)
{
t %= p;
vt[t].push_back(b[mv2++]);
t++;
}
while(mv1 < cnt1)
{
t %= p;
if(mv1 != cnt1 - 1)
{
vt[t].push_back(a[mv1++]);
vt[t].push_back(a[mv1++]);
}
else return false;
t++;
}
if(vt[p - 1].size() == 0) return false;
return true;
}
}
int main()
{
scanf("%d%d%d", &n, &k, &p);
for(int i = 0; i < n; ++i)
{
scanf("%d", &ar[i]);
if(ar[i] & 1) a[cnt1++] = ar[i];
else b[cnt2++] = ar[i];
}
if(judge())
{
printf("YES\n");
for(int i = 0; i < k; ++i)
{
printf("%d", vt[i].size());
for(int j = 0; j < vt[i].size(); ++j) printf(" %d", vt[i][j]);
putchar('\n');
}
}
else printf("NO\n");
return 0;
}