Kanade Loves Maze Designing
分析:
这个题的关键在于求出aij,根据n的范围可知我们需要在o(n^2)内求出即可,而求这个的方法从最根本上来说就是暴力即可,一每一个点为起点dfs遍历整颗树即可得到,但是有些小操作即对颜色的统计这方面不太会,所以没下手。另外,std中有好多值得学习的小细节。
1.颜色的统计——直接影响aij的值
首先如果是统计一个线性结构上某一区间的颜色种类那太简单了,但是这是统计一棵树上的一条路径上的颜色种类,不同点在于遍历方式,遍历树需要递归,根据递归的特点需要对计数的数组做一些操作。
void add(int x)
{
if(!cnt[x]) sum++;
++cnt[x]; return ;
}
void del(int x)
{
if(cnt[x] == 1) sum--;
--cnt[x]; return ;
}
void dfs(int now, int la)
{
add(c[now]); p[now] = sum;
for(int i = 0; i < g[now].size(); ++i)
{
if(g[now][i] != la) dfs(g[now][i], now);
}
del(c[now]);
return ;
}
2.累加取模——用减法取模,比较快,好像是可以卡常?
void fadd1(int &x, int y) {x += y; if(x >= mod1) x -= mod1; return ; }
void fadd2(int &x, int y) {x += y; if(x >= mod2) x -= mod2; return ; }
int ans1 = 0, ans2 = 0;
for(int j = 1; j <= n; ++j)
{
fadd1(ans1, 1ll * p[j] * bas1[j - 1] % mod1);
fadd2(ans2, 1ll * p[j] * bas2[j - 1] % mod2);
}
printf("%d %d\n", ans1, ans2);
完整AC代码:
#include <bits/stdc++.h>
using namespace std;
vector<int> g[2005];
int t, n;
int c[2005], p[2005], cnt[2005], bas1[2005], bas2[2005];
int sum;
const int mod1 = (int)1e9 + 7;
const int mod2 = (int)1e9 + 9;
void Init()
{
bas1[0] = bas2[0] = 1;
for(int i = 1; i <= 2000; ++i)
{
bas1[i] = 1ll * bas1[i - 1] * 19560929 % mod1;
bas2[i] = 1ll * bas2[i - 1] * 19560929 % mod2;
}
return ;
}
void add(int x)
{
if(!cnt[x]) sum++;
++cnt[x]; return ;
}
void del(int x)
{
if(cnt[x] == 1) sum--;
--cnt[x]; return ;
}
void dfs(int now, int la)
{
add(c[now]); p[now] = sum;
for(int i = 0; i < g[now].size(); ++i)
{
if(g[now][i] != la) dfs(g[now][i], now);
}
del(c[now]);
return ;
}
void fadd1(int &x, int y) {x += y; if(x >= mod1) x -= mod1; return ; }
void fadd2(int &x, int y) {x += y; if(x >= mod2) x -= mod2; return ; }
int main()
{
Init();
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(int i = 2, x; i <= n; ++i)
{
scanf("%d", &x);
g[x].push_back(i); g[i].push_back(x);
}
for(int i = 1; i <= n; ++i) scanf("%d", &c[i]);
for(int i = 1; i <= n; ++i)
{
dfs(i, -1);
int ans1 = 0, ans2 = 0;
for(int j = 1; j <= n; ++j)
{
fadd1(ans1, 1ll * p[j] * bas1[j - 1] % mod1);
fadd2(ans2, 1ll * p[j] * bas2[j - 1] % mod2);
}
printf("%d %d\n", ans1, ans2);
}
for(int i = 1; i <= n; ++i) g[i].clear();
}
return 0;
}