CP-ABE方案形式化定义及安全模型总结

形式化定义

基本的形式化定义包含4个基本的多项式算法.
(1) 系统初始化:
Setup( λ \lambda λ) → {PK, MSK}
输入安全参数 λ \lambda λ, 输出系统公钥PK和系统主私钥MSK.

(2) 私钥生成:
KeyGen(PK, MSK, S) → SK
输入公钥PK, 主私钥MSK, 属性集合S, 用户密钥SK.

(3) 数据加密:
Encrypt(PK, A \mathbb{A} A, M) → CT
输入系统公钥PK , 访问结构 A \mathbb{A} A, 明文M, 输出密文CT.

(4) 数据解密:
Decrypt(PK, CT, SK) → M
输入公钥PK, 密文CT, 用户私钥SK, 输出明文M. 否则解密失败.


安全模型

基本的CP-ABE方案安全性基于挑战者和攻击者之间的博弈过程进行证明. 过程概括为
(1) 系统初始化: 攻击者 A \mathcal{A} A选择一个挑战访问结构 A ∗ \mathbb{A}^* A发送给挑战者 B \mathcal{B} B. (目的是攻击所选择的挑战访问结构, 尝试通过非对应的私钥询问解密挑战结构的密文.

(2) 参数设置阶段: 挑战者 B \mathcal{B} B运行Setup算法, 得到PK, MSK, 将PK发送给 A \mathcal{A} A, 然后保留MSK.

(3) 密钥查询阶段 1: 攻击者 A \mathcal{A} A查询一系列与属性集合 S 1 , S 2 , . . . , S q ′ S_1, S_2, ..., S_{q'} S1,S2,...,Sq有关的密钥, 即 A \mathcal{A} A发送属性集合给 B \mathcal{B} B, 然后 B \mathcal{B} B返回对应私钥给 A \mathcal{A} A. 但要求所有的私钥查询都不能满足挑战访问结构 A ∗ \mathbb{A}^* A.

(4) 挑战阶段: A \mathcal{A} A提交两个等长消息 M 0 ∗ , M 1 ∗ M_0^*, M_1^* M0,M1 B \mathcal{B} B, B \mathcal{B} B随机选择 β ∈ { 0 , 1 } \beta \in \{0, 1\} β{0,1}, 加密 M β ∗ M_\beta^* Mβ得到挑战密文 C T b ∗ CT_b^* CTb, 然后发送给 A \mathcal{A} A.(即不可区分性安全目标

(5) 密钥查询阶段 2: 类似密钥查询阶段 1, 攻击者 A \mathcal{A} A再查询另一系列与属性集合 S q ′ + 1 , S q ′ + 2 , . . . , S q S_{q' + 1}, S_{q' + 2}, ..., S_q Sq+1,Sq+2,...,Sq有关的密钥, 即 A \mathcal{A} A发送属性集合给 B \mathcal{B} B, 然后 B \mathcal{B} B返回对应私钥给 A \mathcal{A} A. 但要求所有的私钥查询都不能满足挑战访问结构 A ∗ \mathbb{A}^* A.

(6) 猜测阶段: 攻击者 A \mathcal{A} A输出 β ′ ∈ { 0 , 1 } \beta' \in \{0, 1\} β{0,1}, 如果 β ′ = β \beta' = \beta β=β, 称 A \mathcal{A} A赢得游戏. A \mathcal{A} A在游戏中的优势为
A d v A = ∣ P r [ β ′ = β ] − 1 2 ∣ Adv_{\mathcal{A}} = | Pr[\beta' = \beta] - \frac{1}{2}| AdvA=Pr[β=β]21

定义
如果没有多项式时间内的攻击者 A \mathcal{A} A以不可忽略的优势攻破上述安全模型, 则称基本CP-ABE方案是安全的.

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值