ALDS1_12_B:Single Source Shortest Path I

题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ALDS1_12_B

以临界矩阵的形式给出一个有权图,要求出每个节点到顶点0的最短路径。使用dijkstra算法,思路如下:

 

dijkstra算法

初始化状态下将S置空。初始化s的d[s]=0,除s之外,所有属于V的顶点i的d[i]=∞
循环进行下述处理,直到S=V为止。从V-S中选出d[u]最小的顶点u,将u添加到S,同时将与u相邻且属于V-S的所有顶点v的值更新: 
if(d[u] + w(u,v) < d[v]) 
d[v] = d[u] + w(u,v) 
p[v] = u 

d[v]中记录着从s出发,经由S内顶点抵达v的最短路径成本,即为V中的所有顶点d[v]都记录者s到v的最短路径成本。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int maxx=1010;
const int infinity=1<<30;
int A[maxx][maxx],d[maxx];
bool flag[maxx];
int n,a,b,c;
	
int main (){
	cin>>n;
	for(int i=0;i<n;i++){
		flag[i]=false;
		d[i]=infinity;
	}
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			A[i][j]=infinity;
		}
	}
	for(int i=0;i<n;i++){
		cin>>a>>b;
		for(int j=0;j<b;j++){
			cin>>c;
			cin>>A[a][c];
		}
	}
	d[0]=0;
	while(1){
		int minv=infinity,minj=-1;
		for(int i=0;i<n;i++){
			if(flag[i]==false && d[i]<minv){
				minv=d[i];
				minj=i;
			}
		}
		if(minv==infinity) break;
		flag[minj]=true;
		for(int i =0;i<n;i++){
			if(A[minj][i]!=infinity && flag[i]==false && d[i]>=d[minj]+A[minj][i]){
					d[i]=d[minj]+A[minj][i];
			}
		}
	}
	for(int i=0;i<n;i++) cout<<i<<" "<<(d[i]==infinity ? -1 : d[i])<<endl;
	
	return 0;

}

错点:

1.读入数据时,cin>>c;cin>>A[a][c];要分开写,如果写成cin>>c>>A[a][c];低版本的gcc读入会出现问题。

2.输出时d[i]==infinity ? -1 : d[i] 当无法到达时,输出-1

3.一个可能发生的问题,infinity最好不要设置太大(1<<30大概是1073741824,2倍就越界了,可以用1<<29),否则在算d[minj]+A[minj][i]的时候会出现2倍的infinity,可能会出错,这次没遇到

Shortest Path

03-10

Problem DescriptionnnWhen YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.nnThere is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:nn(1) Mark a vertex in the graph.nn(2) Find the shortest-path between two vertices only through marked vertices.nnFor it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.nnCould you also solve the shortest-path problem?nnInputnnThe input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.nnEnd of input is indicated by a line containing N = M = Q = 0.nnOutputnnStart each test case with "Case #:" on a single line, where # is the case number starting from 1.nnFor operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.nnFor operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.nnThere is a blank line between two consecutive test cases.nnSample Inputnn5 10 10 1 2 6335 0 4 5725 3 3 6963 4 0 8146 1 2 9962 1 0 1943 2 1 2392 4 2 154 2 2 7422 1 3 9896 0 1 0 3 0 2 0 4 0 4 0 1 1 3 3 1 1 1 0 3 0 4 0 0 0nnSample OutputnnCase 1: ERROR! At point 4 ERROR! At point 1 0 0 ERROR! At point 3 ERROR! At point 4

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭