基于改进多目标灰狼优化算法的考虑V2G技术的风、光、荷、储微网多目标日前优化调度研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

研究背景

多目标优化问题

改进多目标灰狼优化算法

V2G技术的整合

微网日前优化调度

研究意义

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章详细讲解


💥1 概述

多目标优化表示对具备多个目标函数的问题的优化。通常的,可以将其表述为

最大化问题如下:

为了利用灰狼优化算法执行多目标优化,需要集成了两个新的部分[63]。第一个是外部存档,它负责存储到目前为止获得的非支配的 Pareto 最优解。第二个组成部分是领导者选择策略,有助于选择 α,β 和 δ 解决方案作为存档中狩猎过程的领导者。

(1)外部存档

外部存档类似于Pareto存档演化策略[64(] Pareto Archived Evolution Strategy,PAES)中的自适应网格,因为它旨在保存迄今为止获得的非支配解。外部存档是一个简单的存储单元,可以保存或检索到目前为止获得的非支配 Pareto 最优解。它有存档控制器和网格机制两个主要组成部分,存档控制器的作用当解决方案想要输入存档或存档已满时控制存档。在迭代过程中,到目前为止获得的比较非支配解与存档中的解决方案。会出现下列四种情况:

•新的非支配解如果不支配存档中任意一个非支配解,则该非支配解不被允许归入存档。

•如果存在大于等于一个存档中非支配解被新的非支配解支配,则应省略存档中的被新非支配解支配的解,将新非支配解归入存档。

•新非支配解和存档中的非支配解相互不支配,则新的非支配解应被归入存档。

•当存档已满时,则应按照网格机制的要求,打乱目标空间的所有段(数据文件空间)后在重新排列组合。剔除最拥挤的段中一个非支配解,再在最不拥挤的段将新非支配解归入存档,这样能是 Pareto 最优前沿更具多样化。

当存档中的非支配解的数量增多时,非支配解的被删除概率也会随之升高。如果存档已满,需要删除非支配解时,操作与第四种情况类似,剔除最拥挤的段中一个非支配解,为新非支配解提供储存空间。在段外部插入非支配解是一种特殊情况。此时,新的非支配解被所有已拓展的段覆盖,所以另外非支配解的段也能改变。网格机制负责使存档解决方案尽可能多样化。在这种机制中,目标空间被分成几个区域,如果新获得的解决方案位于网格外部,则应重新计算所有网格位置以覆盖它;如果新的解决方案位于网格内,则将其引导到具有最少数量的粒子的网格部分。此网格机制的主要优点就是是较低的计算成本。

传统多目标灰狼算法的收敛因子a与迭代次数的隐含线性关系过于固定,实际运行时发现,传统多目标灰狼算法虽理论上前期a接近2偏向全局寻优,后期接近0可实现快速收敛。但全局寻优能力较差,收敛较慢,造成帕累托前沿的边界值以及稀疏度都不够好。当采用多周期余弦收敛因子,以及二进制超级立方体中的精英选择策略后,全局边界寻优能力及帕累托前沿稀疏度都有较大改善,尤其是完整帕累托前沿的轮廓显示所需寻优时间大大减少。详细数学模型和文章讲解见第4部分。

本文求解流程图如下: 

基于改进多目标灰狼优化算法(Improved Multi-Objective Grey Wolf Optimizer, IMOGWO)的考虑V2G(Vehicle-to-Grid,车辆到电网)技术的风、光、荷、储微网多目标日前优化调度研究,是一个涉及新能源、智能电网、以及优化调度领域的先进课题。这项研究旨在通过优化策略,提升包含风能、太阳能(风光)、负荷需求管理、以及储能系统的微电网在整合电动汽车双向充放电(V2G)能力后的整体效率和经济性。下面是对该研究主题的几个关键方面的解析:

研究背景

随着可再生能源比例的不断提升,风能和太阳能等间歇性能源的并网给电力系统调度带来了挑战。同时,电动汽车作为分布式储能资源的潜力逐渐被重视,其V2G技术允许电动车在非行驶时段向电网反向送电,不仅能够增加电网的灵活性和可靠性,还能为车主创造经济效益。

多目标优化问题

在微网调度中,需要平衡多个相互竞争的目标,如最小化运行成本、最大化可再生能源利用率、保障供电可靠性和提高系统经济性等。这类问题属于典型的多目标优化问题,要求找到一系列满足所有目标或在目标之间达到最优权衡解的方案。

改进多目标灰狼优化算法

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种受到狼群社会行为启发的群体智能优化算法。IMOGWO则是对该算法的进一步改进,可能通过引入新的操作机制(如精英保留策略、动态适应参数调整、多策略融合等)来增强其全局搜索能力和收敛速度,以便更有效地处理复杂的多目标优化问题。

V2G技术的整合

整合V2G技术要求模型能够精确预测电动汽车的充电/放电需求,考虑电池状态、用户行为模式等因素,将其作为灵活的储能资源纳入微网调度中。这一步骤对提升微网应对负荷波动、平滑可再生能源输出、参与电网辅助服务等方面至关重要。

微网日前优化调度

“日前”指的是在实际运行日之前进行的调度决策,通常关注未来24小时或更长时间内的系统状态预测与优化。在考虑了风、光资源的不确定性、负荷预测的不准确性及储能系统充放电限制后,优化调度策略需实现能源的高效配置和调度,确保系统在各种可能场景下的稳定、经济运行。

研究意义

该研究通过提出并验证一种先进的优化调度框架,不仅可以提高微电网的综合性能,促进可再生能源的高比例接入和有效利用,还为电动汽车与电网的深度互动提供了理论依据和技术支持,对推动能源转型和构建更加智能、绿色、可持续的能源体系具有重要意义。

📚2 运行结果

 

 

 以上仅展现部分结果图。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周波. 基于灰狼优化算法的楼宇负荷多目标优化调度研究[D].湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000399.

[2]周波. 基于灰狼优化算法的楼宇负荷多目标优化调度研究[D].湘潭大学,2020.DOI:10.27426/d.cnki.gxtdu.2020.000399.

[3]高瑜,黄森,陈刘鑫,黄军虎.基于改进灰狼算法的并网交流微电网经济优化调度[J].科学技术与工程,2020,20(28):11605-11611.

🌈4 Matlab代码、数据、文章详细讲解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值