COGS 499. 牛宫

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_34004420/article/details/52948356

499. 牛宫

★★   输入文件:long.in   输出文件:long.out   简单对比
时间限制:1 s   内存限制:128 MB
Description
AP神牛准备给自己盖一座很华丽的宫殿。于是,他看中了一块N*M的矩形空地。空地中每个格子都有自己的海拔高度。AP想让他的宫殿的平均海拔在海平面之上(假设海平面的高度是0,平均数都会算吧?)。而且,AP希望他的宫殿尽量大,能够容纳更多的人来膜拜他。请问AP的宫殿最后会有多大?
Input Format
第一行为N和M。之后N行,每行M个数,描述的空地的海拔。
Output Format
输出一行,表示宫殿最大面积。
 
Sample Input
3 2
4 0
-10 8
-2 -2
 
Sample Output
4
 
Data Limit
对于30%的数据,N,M≤50;

对于100%的数据,N,M≤200;


暴力枚举肯定会超时的, 四重循环啊,可以得50分, 然后就是TTTTT;


受到hzwer博客的启发:

可以先暴力枚举矩形的两个端点 L和R, 然后在行里找最值, 其实这个极妙的思路我表达不清楚, 一切尽在代码中;

最重要的是这么一个结论:令si表示前i行, L到R的海拔高度之和, 

如果si前面有个sj 且sj<si 那么从j+1到i 宽为R-L+1 一段区间海拔和(si-sj)>0, 这样就找到一个满足题目要求的区间;

更新答案即可;

怎么找sj呢, 把s和他所对应的编号i捆绑, 按照s从小到大排序; 

遍历一遍, 遍历过程中维护一个值, 就是最小编号MIN,

ans=max(ans, (s[i].id-MIN)*(y-x+1));  这样就可以更新答案了;

这个结论是非常妙的, 不理解的话, 自己模拟一下就会懂了;



悄悄地奉上代码;

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;

const int maxn=200+10;
const int INF=0x3f3f3f3f;

struct NB {
	LL num;
	int id;
	bool operator < (const NB& n) const {
		return num<n.num;
	}
} s[maxn];
LL a[maxn][maxn];
int n, m, ans, cnt;

int main()
{
	freopen("long.in", "r", stdin);
	freopen("long.out", "w", stdout);
	scanf("%d%d", &n, &m);
	for(int i=1; i<=n; i++) {
		for(int j=1; j<=m; j++) {
			scanf("%lld", &a[i][j]);
			a[i][j]+=a[i-1][j]+a[i][j-1]-a[i-1][j-1];
		}
	}
	for(int x=1; x<=m; x++) {
		for(int y=x; y<=m; y++) {
			cnt=-1;
			s[++cnt]=((NB){0, 0});
			for(int i=1; i<=n; i++) {
				LL S=a[i][y]-a[i][x-1];
				s[++cnt]=((NB){S, i});
			}
			sort(s, s+cnt+1);
			int MIN=INF;
			for(int i=0; i<=cnt; i++) {
				MIN=min(MIN, s[i].id);
				ans=max(ans, (s[i].id-MIN)*(y-x+1));
			}
		}
	}
	printf("%d", ans);
	return 0;
}

如想看单调栈的代码: 黄学长博客点击打开链接

展开阅读全文

没有更多推荐了,返回首页