题目如下:
解题思路:
分治法 。简单来说就是不停的对半划分,比如k个链表先划分为合并两个k/2个链表的任务,再不停的往下划分,直到划分成只有一个或两个链表的任务,开始合并。举例子来说,比如合并6个链表,那么按照分治法,首先分别合并0和3,1和4,2和5,这样下次只需合并3个链表;之后再合并1和3,最后和2合并就可以了。
代码中的k是通过 (n+1) / 2 计算的,加 1 是为了当n为奇数的时候,k能始终从后半段开始,比如当n=5时,那么此时k=3,则0和3合并,1和4合并,最中间的2空出来。当n是偶数的时候,加1也不会有影响,比如当n=4时,此时k=2,那么0和2合并,1和3合并,完美解决问题。
代码如下:
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
if(lists.empty())
return NULL;
int n = lists.size();
while(n > 1)
{
int k = (n + 1) / 2;
for(int i = 0; i < n / 2; i++){
lists[i] = mergeTwoLists(lists[i], lists[i+k]);
}
n = k;
}
return lists[0];
}
ListNode* mergeTwoLists(ListNode* l1, ListNode* l2){
ListNode* dummy = new ListNode(-1), *cur = dummy;
while(l1 && l2)
{
if(l1->val < l2->val){
cur->next = l1;
l1 = l1->next;
}
else{
cur->next = l2;
l2 = l2->next;
}
cur = cur->next;
}
if(l1) cur->next = l1;
if(l2) cur->next = l2;
return dummy->next;
}
};