【SQL】Spark HiveSQL常见报错

这篇博客主要讨论了在执行数据库操作时遇到的各种错误,包括权限不足、对象不存在、列数或类型不匹配、表分区问题、任务取消、查询权限受限、Hive和Sql语法错误、表别名错误、分区指定错误、Shell命令找不到、Sql语法和Spark语法错误、分区表未指定分区、GroupBy语句错误、字段类型和函数参数错误等。内容深入剖析了这些错误的原因和解决办法,对于数据库管理和开发人员具有很高的参考价值。
摘要由CSDN通过智能技术生成
-- 无权限更新
Authorization failed:No privilege 'Update' found for outputs

-- 库或表对象不存在
com.microsoft.sqlserver.jdbc.SQLServerException: Invalid object name

-- 列数或类型不一致,无法插入表
Cannot insert into target table because column number/types are different

-- 表无分区
FAILED: SemanticException table is not partitioned but partition spec exists

-- 任务被取消
WARN Attempting to kill the process 

-- 无查询权限
Authorization failed:No privilege 'Select' found for inputs

-- Hive语法错误
FAILED: SemanticException Column

-- 表的别名错误
FAILED: SemanticException [Error 10009]:

-- 表分区错误
FAILED: SemanticException [Error 10041]:

-- Shell命令不存在
: command not found

-- Sql语法错误:可能是列数不对
Schema of both sides of union should match

-- 分区指定错误
FAILED: SemanticException Partition spec

-- 分区表未指定分区
Need to specify partition columns because the destination table is partitioned

-- group by语法错误
Repeated key in GROUP BY
或 FAILED: SemanticException [Error 10025]

-- 无权限
Use SHOW GRANT to get more details
或 Authorization failed:No privilege 'Select' found for inputs 

-- Hive语法错误
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. null
或  TOK_ALLCOLREF is not supported in current context

-- 表不存在
Error in query: Table or view '\w*' not found in database '\w*'FAILED: SemanticException [Error 10001]:

-- sql语法错误
mismatched input '(.*)' expecting/
extraneous input '(.*)' expecting

-- spark语法错误:某些字段没有group by
Error in query: expression (.*) is neither present in the group by, nor is it an aggregate function

-- 语法错误:函数参数不正确
Error in query: Invalid number of arguments for function

-- group by字段不能有map类型,可以用map里面的key进行分组
cannot be used as a grouping expression because its data type map(.*) is not an orderable data type

-- group by的语句中不能存在一些不确定的函数,例如regexp_extract()正则解析函数
Error in query: nondeterministic expression (.*) should not appear in grouping expression

-- map类型错误
Error in query: Cannot have map type columns in DataFrame which calls set operations\(intersect, except, etc.\)

-- 字段不明确
Error in query: Reference (.*) is ambiguous

-- 未非分区表
Table (.*) is not a partitioned table

-- 某列字段错误
org.apache.spark.sql.AnalysisException: cannot resolve (.*) given input columns

-- 字段不明确/有歧义
org.apache.spark.sql.AnalysisException: Reference (.*) is ambiguous
或
java.lang.IllegalArgumentException: Field (.*) does not exist

-- 不支持开窗函数
Error in query: Expression (.*) not supported within a window function

-- spark 语法错误
no viable alternative at input

-- 有字段是非聚合函数
Error in query: grouping expressions sequence is empty, and (.*) is not an aggregate function

-- union时字段不同
java.lang.IllegalArgumentException: transpose requires all collections have the same size 或
Error in query: Union can only be performed on tables with the same number of columns

-- 不允许嵌套聚合函数
Not yet supported place for UDAF

-- 插入的数据与表的列数不对
java.sql.SQLException: Column count doesn't match value count at row
### 回答1: 问题描述: 在使用Spark SQL操作Hive时,出现了报错,如下所示: ``` Exception in thread "main" java.lang.NoSuchMethodError: org.apache.hadoop.hive.ql.exec.Utilities.clearWorkMap()V at org.apache.spark.sql.hive.client.ClientWrapper.<init>(ClientWrapper.scala:204) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:271) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:362) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:266) at org.apache.spark.sql.hive.HiveSharedState.metadataHive$lzycompute(HiveSharedState.scala:39) at org.apache.spark.sql.hive.HiveSharedState.metadataHive(HiveSharedState.scala:38) at org.apache.spark.sql.hive.HiveSharedState.externalCatalog$lzycompute(HiveSharedState.scala:46) at org.apache.spark.sql.hive.HiveSharedState.externalCatalog(HiveSharedState.scala:45) at org.apache.spark.sql.hive.HiveSessionState.catalog$lzycompute(HiveSessionState.scala:50) at org.apache.spark.sql.hive.HiveSessionState.catalog(HiveSessionState.scala:48) at org.apache.spark.sql.hive.HiveSessionState$$anon$1.<init>(HiveSessionState.scala:63) at org.apache.spark.sql.hive.HiveSessionState.analyzer$lzycompute(HiveSessionState.scala:63) at org.apache.spark.sql.hive.HiveSessionState.analyzer(HiveSessionState.scala:62) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:49) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:582) ``` 解决方法: 该问题是由于Hive版本与Spark版本不兼容导致的。解决方法如下: 1. 确认Hive版本与Spark版本是否兼容,可以在Spark官网查看版本兼容性。 2. 如果版本不兼容,可以升级或降级Hive版本,或者升级或降级Spark版本。 3. 如果版本兼容,可以尝试重新启动SparkHive服务,或者重新编译SparkHive。 4. 如果以上方法都无法解决问题,可以尝试使用其他的SQL操作Hive的工具,如Beeline等。 总之,要保证SparkHive版本兼容,并且正确配置SparkHive的环境,才能避免出现该问题。 ### 回答2: 在使用Spark-SQL操作Hive时,常常会遇到一些错误。其中一些常见的错误可能包括: 1. ClassNotFoundException: org.apache.hadoop.hive.ql.metadata.HiveException 这个错误通常表示你的 Spark 集群无法找到 Hive 函数库。可能的解决方案是确认你是否正确安装 Hive 或者使用了正确配置的 Spark 路径: - 如果你没有安装 Hive,你需要从 Hive 下载页面下载Hive 安装。成功安装后,需要将 $HIVE_HOME/lib/hive-exec.jar 添加到 Spark 的 classpath 中(例如通过 spark.driver.extraClassPath 和 spark.executor.extraClassPath 参数来添加)。 - 如果你安装了 Hive,但是仍然出现此错误,你需要检查你的 Spark 是否在使用正确的类路径。可能需要设置 PATH 或者 SPARK_DIST_CLASSPATH 等环境变量。 2. org.apache.spark.SparkException: Exception thrown in awaitResult 如果出现这个错误,通常说明 Spark-SQL 查询需要更多的内存或者计算能力。可能需要调整 Spark-SQL 相关的配置: - 设置 Spark 的执行器内存和执行器核心(例如通过 spark.executor.memory 和 spark.executor.cores 这两个参数),以确保足够的计算资源; - 增加 Spark-SQL 相关的内存限制(例如通过设置 spark.sql.shuffle.partitions、spark.sql.autoBroadcastJoinThreshold、spark.driver.memory 等参数); - 减小查询数据量等其他引起内存不足的原因。 3. Command failed: java.io.IOException: Cannot run program "hadoop" 如果出现这个错误,可能是由于缺少 Hadoop CLI 或者 Hadoop 开发包(Hadoop SDK)。 - 确认你已经安装了 Hadoop CLI 和 Hadoop SDK - 确认 Spark 的 Hadoop 配置和你的集群匹配。具体来说,你需要确保环境变量 HADOOP_HOME 或者 HADOOP_CONF_DIR 指向正确的路径,或者在 Spark 集群初始化时正确设置好 Hadoop 配置。 总之,遇到 Spark-SQL 操作 Hive 中的错误时,首先需要明确错误的原因,然后根据具体情况采用相应的解决方案。常见的解决方案包括: - 确认 Hive 安装及环境变量设置是否正确; - 调整 Spark-SQL 相关参数以适应查询需求; - 确保 Hadoop CLI 及 Hadoop SDK 是否已正确安装。 ### 回答3: 在使用Spark-SQL操作Hive时,可能会遇到一些常见报错,以下是其中一些问题和可能的解决方案。 1. hive文件丢失或权限不足 有时候,您在使用Spark-SQL操作Hive时,可能会遇到hive文件丢失或无法访问的权限问题。这可能是由于文件系统权限或文件本身的原因导致的。为了解决这个问题,您应该确保获取足够的权限来访问hive文件,并且检查您的文件系统是否正确。 2. classnotfoundexception:HiveCli 当您使用Spark-SQL操作Hive时,您可能会遇到一个类找不到的错误-"classnotfoundexception:HiveCli"。 这是因为hive-jdbc驱动程序文件缺失或未正确设置驱动程序路径所导致的。Solution是安装hive-jdbc驱动程序,并将其正确设置为Spark应用程序的驱动程序路径。 3. NoClassDefFoundError: org/apache/hive/service/cli/thrift/ThriftCLIService 这个错误的原因是由于您的Spark版本与Hive版本不适配,具体来说是Spark版本过高,导致Hive使用的jar包不兼容。解决方法是降低Spark版本或使用Spark程序库的API时使用其兼容的Hive版本。 4. MetaException(message: NoSuchObjectException:database not found) 如果您正在尝试使用Spark-SQL查询Hive数据库,并且收到此错误消息,则表示您正在尝试访问不存在的数据库。 解决方法是创建一个名为该数据库的数据库或检查查询中是否存在语法错误。 5. Spark-SQL执行查询失败 Spark-SQL执行查询失败往往是由于应用程序逻辑或数据源的不足所致。解决方法包括检查您的查询语句是否正确设置,处理空值和异常情况,以及监视应用程序和集群资源以提高性能。 为了避免上述报错,您应该确保在使用Spark-SQL操作Hive之前做好准备工作,包括检查应用程序和数据源的兼容性,设置正确的驱动程序路径,并提供足够的资源来处理您的查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值