GhostNet 论文解读

GhostNet: More Features from Cheap Operations. CVPR 2020.
论文地址:arXiv
开源 PyTorch代码:GitHub

引言

由于嵌入式设备上有限的内存和计算资源,很难在上面部署卷积神经网络。因此,深度神经网络设计最新的趋势是探索轻量级高效网络体系结构的设计。那些成功的CNN模型一个重要的特征是特征图冗余,但是大量甚至冗余的信息通常可以确保对输入数据的全面了解。
文章提出了一个新颖的模型(Ghost),可以通过廉价的操作生成更多的feature maps。基于一组原始的特征图,作者应用了一系列线性变换,来生成许多完全可以从原始特征发掘所需信息的ghost feature maps。所提出的Ghost模块可以作为即插即用组件来升级现有的卷积神经网络。Ghost bottlenecks可以被设计用来堆叠Ghost 模块,从而可以形成轻量级的网络GhostNet。文中指出,GhostNet在ImageNet 2012分类数据集上的top1准确率(75.7%)比MobileNet v3(75.2%)还要高,却拥有着相似的计算量。

在这里插入图片描述
如上图所示,以在ResNet-50为例,将经过第一个残差块处理后的特征图拿出来,可以看到其中存在许多相似的特征映射对,例如彼此重影。本文做的不是避免使用多余的特征图,而是倾向于以节省成本的方式包含它们。
深度卷积神经网络通常由大量卷积组成,从而导致大量的计算成本。尽管最近的工作,例如MobileNet和ShuffleNet已经引入了深度卷积或混洗操作,以使用较小的卷积滤波器(浮点数运算)来构建有效的CNN。其余1×1卷积层仍将占用大量内存和FLOPs

Ghost模块

输入数据 X ∈ R c ∗ h ∗ w \quad X\in\mathbb R^{c*h*w} XRchw ,其中c是输入数据的通道,h和w是输入数据的高和宽,则生成n个特征图的任意卷积层可以表示为 Y = X ∗ f + b \quad Y=X*f+b Y=Xf+b,其中 Y ∈ R h ′ ∗ w ′ ∗ n \quad Y\in\mathbb R^{h^{'} *w^{'} *n} YRhwn是具有n个通道的输出。 f ∈ R c ∗ k ∗ k ∗ n \quad f\in\mathbb R^{c*k*k*n} fRckkn,其中 h ′ \quad h^{'} h w ′ \quad w^{'} w是输出特征图的高和宽, k ∗ k \quad k*k kk是卷积滤波器 f \quad f f的内核大小。在这个卷积操作中,FLOPs的计算量是 n ∗ h ′ ∗ w ′ ∗

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值