Keras训练历史记录保存,导入,绘制acc或者loss曲线

本文介绍了如何在Keras中保存训练历史记录,然后详细讲解了如何读取这些记录,并通过示例展示了如何绘制准确率和损失的变化曲线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练:

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit(X, Y, validation_split=
UNet模型通常用于图像分割任务,这里介绍一下如何对UNet模型的训练结果进行可视化。 首先,我们可以使用Keras内置的History类记录模型的训练过程,包括每个epoch的训练损失、验证损失和准确率等。我们可以通过以下代码来获取这些信息: ```python history = model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=50, batch_size=16) train_loss = history.history['loss'] val_loss = history.history['val_loss'] train_acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] ``` 其中,`train_loss`为训练集损失,`val_loss`为验证集损失,`train_acc`为训练集准确率,`val_acc`为验证集准确率。我们可以使用Matplotlib库将这些信息可视化成图表。 首先是损失曲线绘制: ```python import matplotlib.pyplot as plt epochs = range(len(train_loss)) plt.plot(epochs, train_loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() ``` 这段代码将训练集和验证集的损失曲线绘制在同一张图中,可以直观地观察模型的训练效果。 接下来是准确率曲线绘制: ```python plt.plot(epochs, train_acc, 'b', label='Training accuracy') plt.plot(epochs, val_acc, 'r', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.show() ``` 这段代码将训练集和验证集的准确率曲线绘制在同一张图中,同样可以直观地观察模型的训练效果。 需要注意的是,这些可视化结果只能作为参考,具体的模型表现还需要结合实际应用场景进行评估。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值