Description动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是”1 X Y”,表示X和Y是同类。
第二种说法是”2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output只有一个整数,表示假话的数目。
Sample Input
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
Sample Output
3
思路
该问题是种类并查集问题,我们需要对食物链中的关系进行分析。
如果仅仅是要求分析出有几个物种的话,直接使用并查集的模板套上去就行了。但是,由于本题需要计算出哪些动物是同种、以及不同种类动物间的捕食关系,还要判断当前输入的信息和之前已经存在的是否产生冲突,因此,我们需要拓宽并查集的范围,来处理上述信息。
我们把并查集的范围扩展到3n,那么我们就可以通过不同区间的集合的映射关系,存储题中的“是否是同种物种”、“捕食关系”了。
画图如下:
对于a吃b的情况,我们将a的第一部分和第二部分与b

这是一个关于解决环形食物链问题的算法题目,涉及到并查集的扩展应用。题目要求根据输入的动物编号和它们之间的食物链关系,判断真假陈述的个数。扩展的并查集在这里用于存储动物的种类关系和捕食关系,通过合并不同部分来建立和检查关系。当输入信息与已知信息冲突、超出范围或表示自我捕食时,视为假话。代码中展示了如何处理这些情况并计算假话总数。
最低0.47元/天 解锁文章
322

被折叠的 条评论
为什么被折叠?



