数学——函数的极限

证明:当x0>0时,\lim_{x\rightarrow x_0}\sqrt{x}=\sqrt{x_0}

说明:遇到一题其中一个地方没弄明白:

只要\left | x-x_0 \right |<\sqrt{x_0}\varepsilon且x>=0,为什么要x>=0?命名已经是【根号x】了,不是已经说明了x>=0吗?

解析:其实问题在于x0的去心邻域,与x的合法性的定义没理解清楚,虽然题目中已经是\sqrt{x}了,但是我们能不能直接说x>=0?这就是中学函数题第一小题常见的,需要先确定定义域,只是这里过于简单了,所以我们忽视了这样一个细节。

根据定义找到的\delta,如果不考虑x>=0,那么就是\sqrt{x0}\varepsilon,而x>=0并不能直接用\left | x-x_0 \right |<\sqrt{x_0}\varepsilon表现出来,即不能说:

\left | x-x_0 \right |<\sqrt{x_0}\varepsilon,取\delta=\sqrt{x_0}\varepsilon,则\lim_{x\rightarrow x_0}\sqrt{x}=\sqrt{x_0}

由于\varepsilon的任意性,如果\sqrt{x0}\varepsilon>x0,因为\delta=\sqrt{x0}\varepsilon的,所以|x-x_0|>x_0是成立的,则x<0,所以是错的。

总结:x不能仅由\delta确定,更要有合法范围,而合法范围如果有限制,需要利用其限制\delta的取值

:要确定\delta

x的合法范围是x\geq 0,则|x-x_0|\leqslant x_0

|\sqrt{x}-\sqrt{x_0}|=|\frac{x-x_0}{\sqrt{x}+\sqrt{x_0}}|\leq \frac{1}{\sqrt{x_0}}|x-x_0|<\varepsilon,则\left | x-x_0 \right |<\sqrt{x_0}\varepsilon

\delta =min\left \{x_0 , \sqrt{x_0}\varepsilon \right \},则当0<\left | x-x_0 \right |<\delta时,|\sqrt{x}-\sqrt{x_0}|<\varepsilon

所以\lim_{x\rightarrow x_0}\sqrt{x}=\sqrt{x_0}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从零开始的智障生活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值