决策树学习报告

这篇报告探讨了决策树在多属性分类问题中的应用。首先介绍了问题背景,然后详细阐述了数据准备,使用《机器学习实战》数据集,无异常值。接着,深入解释了决策树的模型原理,基于信息熵的划分标准和递归构造过程。最后,展示了通过Python实现的决策树算法,并通过matplotlib进行可视化,结果显示树深度适中。
摘要由CSDN通过智能技术生成

一、 问题描述

对于具有多个属性的分类问题,我们需要找到一个合适的分类方法,这里,我们尝试采用符合人类决策过程的决策树学习算法,用树形判断的方式对数据逐层分类。

二、 数据准备

本次报告测试数据采取《机器学习实战》中测试数据集,无缺省异常值。四维数据基本格式展示如下:


三、 模型原理与建立

决策树是一种基于信息论的 以树形 结构 展示的 分类算法 ,通过找出具有最大 信息量的划分特征 ,对数据进行逐一划分 ,对数据进行逐一划分 ,各种决策树的主函数大同小异,本质上是个递归函数, 上是个递归函数上是个递归函数, 函数主要功能是根据某种规则生长出决策树的各个分支节点, 并根据终止条件结束算法 。

其中,本次实现的决策树停止规则如下 :

1. 当前节点全部属于同一类别无需划分

2. 当前所有样本在所有属性上取值相同无法划分

具体实现如下:


而对信息量的确定主要是基于论中熵义 :

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值