实时数仓神器 - Flink-CDC(最新版本)
关键词:Flink-CDC、Flink-CDC入门教程、Flink CDC Connectors 、Flink-CDC 2.0.0
文章目录
前言
在 Flink CDC 诞生之前,说起数据同步工具,大家可能最熟悉 Canal、MaxWell 等工具。自从Flink CDC 诞生之后,经过一年时间的发展,现在已经慢慢成熟。Flink CDC 上手非常容易,上手容易并不意味着功能简单,相反,它的功能很强大。今天我们就来认识一下什么是Flink CDC。
一、什么是 CDC?
CDC 是 Change Data Capture(变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。
CDC 主要分为基于查询和基于日志两种方式。
二、CDC 应用场景
- 数据同步,用于备份,容灾
- 数据分发,一个数据源分发给多个下游
- 数据采集(E),面向数据仓库/数据湖的 ETL 数据集成
三、什么是 Flink CDC?
Flink CDC 是 Apache Flink 的一组源连接器,使用变更数据捕获 (CDC) 从 MySQL、PostgreSQL 等不同数据库中直接读取全量数据和增量变更数据。Flink CDC Connectors 集成了 Debezium 作为捕获数据变化的引擎。所以它可以充分利用Debezium的能力。
四、Flink CDC 优点
- 支持读取数据库快照并继续读取binlog,即使发生故障也只处理一次。
- DataStream API 的 CDC 连接器,用户可以在单个作业中使用对多个数据库和表的更改,而无需部署 Debezium 和 Kafka。
- Table/SQL API 的 CDC 连接器,用户可以使用 SQL DDL 创建 CDC 源来监视单个表上的更改。
五、Flink CDC 入门案例
本案例使用 MySQL 数据库。
-
先决条件
确保 MySQL 数据库已开启 Binlog
-
创建一个 maven 工程
本案例已上传至码云,有需要的可以去我仓库下载。
-
引入依赖
<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>1.13.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.12</artifactId> <version>1.13.2</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.12</artifactId> <version>1.13.2</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.25</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner-blink_2.12</artifactId> <version>1.13.2</version> </dependency> <dependency> <groupId>com.ververica</groupId> <artifactId>flink-connector-mysql-cdc</artifactId> <version>2.0.0</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.75</version> </dependency> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-simple</artifactId> <version>1.7.25</version> <scope>compile</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-elasticsearch7_2.11</artifactId> <version>1.13.2</version> </dependency>
-
编写demo
public class FlinkCDC { public static void main(String[] args) throws Exception { //1.获取Flink 执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); //2.通过FlinkCDC构建SourceFunction DebeziumSourceFunction<String> sourceFunction = MySqlSource.<String>builder() .hostname("127.0.0.1") .port(3306) .username("root") .password("root") .databaseList("flink-cdc") .deserializer(new StringDebeziumDeserializationSchema()) .startupOptions(StartupOptions.initial()) .build(); DataStreamSource<String> dataStreamSource = env.addSource(sourceFunction); //3.数据打印 dataStreamSource.print(); //4.启动任务 env.execute("FlinkCDC"); } }
-
运行
当我们在数据库添加、修改、删除一条数据时,控制台都会输出变更信息
[debezium-mysqlconnector-mysql_binlog_source-change-event-source-coordinator] INFO io.debezium.connector.mysql.MySqlStreamingChangeEventSource - Keepalive thread is running [Legacy Source Thread - Source: Custom Source -> (Sink: Print to Std. Out, Sink: Unnamed) (1/1)#0] INFO com.ververica.cdc.debezium.internal.DebeziumChangeFetcher - Database snapshot phase can't perform checkpoint, acquired Checkpoint lock. SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1630413635, file=mysql-bin.000003, pos=1234, snapshot=true}} ConnectRecord{topic='mysql_binlog_source.flink-cdc.t_user', kafkaPartition=null, key=Struct{id=1}, keySchema=Schema{mysql_binlog_source.flink_cdc.t_user.Key:STRUCT}, value=Struct{after=Struct{id=1,desc=数据测试,name=极客},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1630413635069,snapshot=true,db=flink-cdc,table=t_user,server_id=0,file=mysql-bin.000003,pos=1234,row=0},op=r,ts_ms=1630413635072}, valueSchema=Schema{mysql_binlog_source.flink_cdc.t_user.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)} SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={ts_sec=1630413635, file=mysql-bin.000003, pos=1234}} ConnectRecord{topic='mysql_binlog_source.flink-cdc.t_user', kafkaPartition=null, key=Struct{id=2}, keySchema=Schema{mysql_binlog_source.flink_cdc.t_user.Key:STRUCT}, value=Struct{after=Struct{id=2,desc=你爱我我爱你,name=极客688},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1630413635074,snapshot=last,db=flink-cdc,table=t_user,server_id=0,file=mysql-bin.000003,pos=1234,row=0},op=r,ts_ms=1630413635074}, valueSchema=Schema{mysql_binlog_source.flink_cdc.t_user.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)} [Legacy Source Thread - Source: Custom Source -> (Sink: Print to Std. Out, Sink: Unnamed) (1/1)#0] INFO com.ververica.cdc.debezium.internal.DebeziumChangeFetcher - Received record from streaming binlog phase, released checkpoint lock. [debezium-engine] INFO io.debezium.connector.common.BaseSourceTask - 3 records sent during previous 00:01:31.149, last recorded offset: {transaction_id=null, ts_sec=1630413724, file=mysql-bin.000003, pos=1299, row=1, server_id=1, event=2} SourceRecord{sourcePartition={server=mysql_binlog_source}, sourceOffset={transaction_id=null, ts_sec=1630413724, file=mysql-bin.000003, pos=1299, row=1, server_id=1, event=2}} ConnectRecord{topic='mysql_binlog_source.flink-cdc.t_user', kafkaPartition=null, key=Struct{id=3}, keySchema=Schema{mysql_binlog_source.flink_cdc.t_user.Key:STRUCT}, value=Struct{after=Struct{id=3,desc=66,name=666},source=Struct{version=1.5.2.Final,connector=mysql,name=mysql_binlog_source,ts_ms=1630413724000,db=flink-cdc,table=t_user,server_id=1,file=mysql-bin.000003,pos=1436,row=0},op=c,ts_ms=1630413724566}, valueSchema=Schema{mysql_binlog_source.flink_cdc.t_user.Envelope:STRUCT}, timestamp=null, headers=ConnectHeaders(headers=)}
至此,Flink CDC 入门案例结束,是不是非常简单,Flink CDC 更多功能请参阅官网,自行研究。
总结
好了以上就是本文的主要内容了,本文主要介绍了 CDC 的概念,Flink-CDC 概念及入门案例,。相信无敌的你都已经get到全部要点了,本专栏后续将带你继续了解大数据相关的神器,敬请期待哦(*^▽^*)
。
声明
以上内容均来源于网络,如有错误,请多多包含。